Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Bioorg Chem ; 143: 107042, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38118298

RESUMEN

Hyperuricemia, a disease characterized by elevation of serum uric acid level beyond 6 mg/dL. This elevation led to appearance of symptoms from joint pain to gout and from gout to difficulty in mobility of the patient. So, in this review, we have summarized the pathology of hyperuricemia, discovery of target and discovery of first XO inhibitor. At last, this review provides in-sights about the recently discovered as natural XO inhibitors, followed by design, structure activity relationship and biological activity of synthetic compounds as XO inhibitors discovered between 2020 and 2023 years. At last, the pharmacophores generated in this study will guide new researchers to design and modify the structure of novel XO inhibitors.


Asunto(s)
Gota , Hiperuricemia , Humanos , Hiperuricemia/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Ácido Úrico , Xantina Oxidasa
2.
Mol Divers ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38253844

RESUMEN

Thiazolidinedione has been used successfully by medicinal chemists all over the world in the development of potent antidiabetic derivatives. The few compounds with excellent antidiabetic potency that we have identified in this review could be used as a lead for further research into additional antidiabetic mechanisms. The information provided in this review regarding the design, biological activity, structure-activity relationships, and docking studies may be useful for scientists who wish to further explore this scaffold in order to fully utilize its biological potential and develop antidiabetic agents that would overcome the limitations of currently available medications for the treatment of diabetes. This review outlines the antidiabetic potential of Thiazolidinedione-based derivatives that have been published in the year 2021- till date.

3.
Chem Biodivers ; : e202401109, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951966

RESUMEN

Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life-threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last few decades suggest the failure of currently available drugs in containment of this disease. α-Glucosidase is a potential target for effectively tackling this disease and attracting significant interest from medicinal chemists around the globe. Besides having a set of side effects, currently available α-glucosidase inhibitors (carbohydrate mimics) offer better tolerability, safety, and synergistic pharmacological outcomes with other antidiabetic drugs therefore medicinal chemists have working extensively over last three decades for developing alternative α-glucosidase inhibitors. The 1,2,3-Triazole nucleus is energetically used by various research groups around the globe for the development of α-glucosidase inhibitors posing it as an optimum scaffold in the field of antidiabetic drug development. This review is a systematic analysis of α-glucosidase inhibitors developed by employing 1,2,3-triazole scaffold with special focus on design strategies, structure-activity relationships, and mechanism of inhibitory effect. This article will act as lantern for medicinal chemists in developing of potent, safer, and effective α-glucosidase inhibitors with desired properties and improved therapeutic efficacy.

4.
Arch Pharm (Weinheim) ; 357(4): e2300296, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38196114

RESUMEN

Considerable ingenuity has been shown in the recent years in the discovery of novel xanthine oxidase (XO) inhibitors that fall outside the purine scaffold. The triazole nucleus has been the cornerstone for the development of many enzyme inhibitors for the clinical management of several diseases, where hyperuricemia is one of them. Here, we give a critical overview of significant research on triazole-based XO inhibitors, with respect to their design, synthesis, inhibition potential, toxicity, and docking studies, done till now. Based on these literature findings, we can expect a burst of modifications on triazole-based scaffolds in the near future by targeting XO, which will treat hyperuricemics, that is, painful conditions like gout that at present are hard to deal with.


Asunto(s)
Hiperuricemia , Xantina Oxidasa , Humanos , Relación Estructura-Actividad , Inhibidores Enzimáticos/farmacología , Hiperuricemia/tratamiento farmacológico , Triazoles/farmacología , Simulación del Acoplamiento Molecular
5.
Mol Cell Biochem ; 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37329491

RESUMEN

Breast cancer is most common in women and most difficult to manage that causes highest mortality and morbidity among all diseases and posing significant threat to mankind as well as burden on healthcare system. In 2020, 2.3 million women were diagnosed with breast cancer and it was responsible for 685,000 deaths globally, suggesting the severity of this disease. Apart from that, relapsing of cases and resistance among available anticancer drugs along with associated side effects making the situation even worse. Therefore, it is a global emergency to develop potent and safer antibreast cancer agents. Isatin is most versatile and flying one nucleus which is an integral competent and various anticancer agent in clinical practice and widely used by various research groups around the globe for development of novel, potent, and safer antibreast cancer agents. This review will shed light on the structural insights and antiproliferative potential of various isatin-based derivatives developed for targeting breast cancer in last three decades that will help researchers in design and development of novel, potent, and safer isatin-based antibreast cancer agents.

6.
Mol Divers ; 27(4): 1905-1934, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36197551

RESUMEN

Emergence of antimicrobial resistance has become a great threat to human species as there is shortage of development of new antimicrobial agents. So, its mandatary to combat AMR by initiating research and developing new novel antimicrobial agents. Among phytoconstituents, Quinoline (nitrogen containing heterocyclic) have played a wide role in providing new bioactive molecules. So, this review provides rational approaches, design strategies, structure activity relationship and mechanistic insights of newly developed quinoline derivatives as antimicrobial agents.


Asunto(s)
Antiinfecciosos , Quinolinas , Humanos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Relación Estructura-Actividad , Quinolinas/farmacología , Quinolinas/química
7.
Arch Pharm (Weinheim) ; 355(2): e2100368, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34783073

RESUMEN

Keeping in view the emerging need for potent and safer anti-breast cancer agents as well as the pharmacological attributes of isatin, quinolone, and morpholine derivatives, novel hydrazine-linked morpholinated isatin-quinoline hybrids were designed, synthesized, and evaluated as anti-breast cancer agents. The synthesized hybrid compounds were preliminarily screened against two breast cancer cell lines (MCF-7 and MDA-MB-231). Almost all synthetics showed potent inhibitory potential against hormone-positive MCF-7 cells while being inactive against hormone-negative MDA-MB-231 cells. Potent compounds were further evaluated against the L929 (noncancerous skin fibroblast) cell line and found to be highly selective for MCF-7 cells over L929 cells. Cell cycle analysis confirmed that the most potent compound AS-4 (MCF-7: GI50 = 4.36 µM) causes mitotic arrest at the G2 /M phase. Due to higher selectivity toward estrogen receptor alpha (ERα)-dependent MCF-7 cells, various binding interactions of AS-4 with ERα are also streamlined, suggesting the capability of AS-4 to completely block ERα. Overall, the study suggests that AS-4 can act as a potential lead for further development of potent and safer anti-breast cancer agents.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Isatina/farmacología , Quinolinas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular , Línea Celular Tumoral , Receptor alfa de Estrógeno/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Isatina/síntesis química , Isatina/química , Células MCF-7 , Ratones , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-Actividad
8.
Mol Divers ; 25(1): 603-624, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32886304

RESUMEN

Breast cancer is the most prominent, frequently diagnosed and leading cause of death among women. Estrogen is an agonist of estrogen receptor alpha (ER-α), expressed in mammary glands and is responsible for initiating many signalling pathways that lead to differentiation and development of breast tissue. Any mutations in these signalling pathways result in irregular growth of mammary tissue, leading to the development of tumour or cancer. All these observations attract the attention of researchers to antagonize ER-α receptor either by developing selective estrogen receptor modulators or by selective estrogen receptor degraders. Therefore, this article provides a brief overview of various factors that are responsible for provoking breast cancer in women and design strategies recently used by the various research groups across the world for antagonizing or demodulating ER-α.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Receptor alfa de Estrógeno/metabolismo , Terapia Molecular Dirigida , Receptor alfa de Estrógeno/antagonistas & inhibidores , Femenino , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/uso terapéutico , Humanos , Modelos Moleculares
9.
Mol Cell Biochem ; 453(1-2): 1-9, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30194582

RESUMEN

We investigated the involvement of peroxisome proliferator activated receptor-γ (PPAR-γ)/endothelial nitric oxide synthase (eNOS) pathway in estradiol mediated protection against ischemia reperfusion (I/R)-induced acute kidney injury (AKI) in rats. To induce AKI, rats underwent 40 min of bilateral renal ischemia followed by 24 h of reperfusion. I/R-induced kidney damage was quantified by measuring serum creatinine, creatinine clearance, urea nitrogen, uric acid, potassium, fractional excretion of sodium, microproteinuria, and renal oxidative stress (thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione). Hematoxylin eosin stain demonstrated renal histology, while renal expression of apoptotic markers (Bcl-2, Bax), PPAR-γ and eNOS were quantified by immunohistochemistry. Estradiol (1 mg/kg, i.p.) was administered 30 min before I/R in rats. In separate groups, PPAR-γ antagonist, BADGE (30 mg/kg, i.p.), and NOS inhibitor, L-NAME (20 mg/kg, i.p.) were administered prior to estradiol treatment, which was followed by I/R in rats. I/R caused significant renal damage as demonstrated by biochemical (serum/urine), renal oxidative stress and histological changes alongwith increased expression of Bax and decreased levels of Bcl-2, PPAR-γ and eNOS, which were prevented by estradiol. Pre-treatment with BADGE and L-NAME abolished estradiol mediated renoprotection. Notably, I/R + estradiol + BADGE group revealed decreased expression of PPAR-γ and eNOS in renal tissues. In I/R + estradiol + L-NAME group, eNOS expression was reduced while PPAR-γ levels remained unchanged. These results suggest that estradiol modulates PPAR-γ which consequently regulates eNOS expression in rat kidneys. We conclude that estradiol protects against I/R-induced AKI through PPAR-γ stimulated eNOS activation in rats.


Asunto(s)
Lesión Renal Aguda , Estradiol/farmacocinética , Óxido Nítrico Sintasa de Tipo III/metabolismo , PPAR gamma/metabolismo , Daño por Reperfusión , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Activación Enzimática/efectos de los fármacos , Masculino , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Wistar , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Proteína X Asociada a bcl-2/metabolismo
10.
Mol Cell Biochem ; 434(1-2): 33-40, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28432550

RESUMEN

In the present study, we investigated possible involvement of N-methyl-D-aspartate receptors (NMDAR) in estradiol mediated protection against ischemia reperfusion (I/R)-induced acute renal failure (ARF) in rats. Bilateral renal ischemia of 40 min followed by reperfusion for 24 h induced ARF in male wistar rats. Quantification of serum creatinine, creatinine clearance (CrCl), blood urea nitrogen (BUN), uric acid, potassium, fractional excretion of sodium (FeNa), and urinary microproteins was done to assess I/R-induced renal damage in rats. Oxidative stress in kidneys was measured in terms of myeloperoxidase activity, thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione levels. Hematoxylin & eosin and periodic acid Schiff stains were used to reveal structural changes in renal tissues. Estradiol benzoate (0.5 and 1.0 mg/kg, intraperitoneally, i.p.) was administered 1 h prior to I/R in rats. In separate groups, rats were treated with NMDAR agonists, glutamic acid (200 mg/kg, i.p.), and spermidine (20 mg/kg, i.p.) before administration of estradiol. Marked increase in serum creatinine, BUN, uric acid, serum potassium, FeNa, microproteinuria, and reduction in CrCl demonstrated I/R-induced ARF in rats. Treatment with estradiol mitigated I/R-induced changes in serum/urine parameters. Moreover, estrogen attenuated oxidative stress and structural changes in renal tissues. Prior administration of glutamic acid and spermidine abolished estradiol mediated renoprotection in rats. These results indicate the involvement of NMDAR in estradiol mediated renoprotective effect. In conclusion, we suggest that NMDAR antagonism serves as one of the mechanisms in estradiol-mediated protection against I/R-induced ARF in rats.


Asunto(s)
Lesión Renal Aguda/prevención & control , Estradiol/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Riñón/irrigación sanguínea , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Daño por Reperfusión/prevención & control , Lesión Renal Aguda/patología , Animales , Nitrógeno de la Urea Sanguínea , Masculino , Estrés Oxidativo/efectos de los fármacos , Proteinuria/prevención & control , Ratas , Ratas Wistar , Ácido Úrico/sangre
11.
Mol Cell Biochem ; 417(1-2): 111-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27206738

RESUMEN

The present study investigated the role of N-methyl-D-aspartate (NMDA) receptors in pioglitazone-mediated protection against renal ischemia reperfusion injury (IRI) in rats. Male wistar rats were subjected to 40 min of bilateral renal ischemia followed by reperfusion for 24 h to induce kidney injury. The renal damage was evaluated by measuring serum creatinine, creatinine clearance, blood urea nitrogen, uric acid, electrolytes, and microproteinuria in rats. Oxidative stress in renal tissues was quantified in terms of myeloperoxidase activity, thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione level. Hematoxylin-eosin and periodic acid Schiff staining of renal tissues were performed to observe histological changes. Pioglitazone (20 and 40 mg/kg) was administered 1 h prior to ischemia in rats. In separate groups, NMDA agonists, glutamic acid (200 mg/kg), and spermidine (20 mg/kg) were administered 1 h prior to pioglitazone treatment, followed by renal IRI in rats. Ischemia reperfusion resulted in marked renal damage with significant changes in serum and urine parameters along with marked oxidative stress and histological changes in kidneys. Pioglitazone treatment afforded anti-oxidant effect and renoprotection in a dose-dependent manner in rats. Pioglitazone-mediated renoprotection was attenuated by glutamic acid and spermidine pretreatment in rats, which indicated the role of NMDA receptors in pioglitazone-mediated protection. It is concluded that NMDA antagonism serves as one of the mechanisms in pioglitazone-mediated protection against renal IRI in rats.


Asunto(s)
Enfermedades Renales , Receptores de N-Metil-D-Aspartato , Daño por Reperfusión , Tiazolidinedionas/farmacología , Animales , Enfermedades Renales/metabolismo , Enfermedades Renales/prevención & control , Masculino , Pioglitazona , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control
12.
Chem Pharm Bull (Tokyo) ; 64(5): 399-409, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27150472

RESUMEN

In the present study, a series of 2,4-diarylpyrano[3,2-c]chromen-5(4H)-ones were synthesised and evaluated as antiproliferative agents. The compounds were evaluated against a panel of human cancer cell lines. CH-1 exhibited significant cytoxicity against HCT 116 cell lines with an IC50 value of 1.4 and 4.3 µM against "MiaPaCa-2" cell lines. The compound CH-1 was found to induce apoptosis as evidenced by phase contrast microscopy, Hoechst 33258 staining and mitochondrial membrane potential (MMP) loss. The cell phase distribution studies indicated that the apoptotic population increased from 10.22% in the control sample to 57.19% in a sample treated with 20 µM compound CH-1.


Asunto(s)
Antineoplásicos/farmacología , Cromonas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cromonas/síntesis química , Cromonas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Membranas Mitocondriales/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
13.
Biomedicines ; 12(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38927399

RESUMEN

Breast cancer is the most common cancer among women. Currently, it poses a significant threat to the healthcare system due to the emerging resistance and toxicity of available drug candidates in clinical practice, thus generating an urgent need for the development of new potent and safer anti-breast cancer drug candidates. Coumarin (chromone-2-one) is an elite ring system widely distributed among natural products and possesses a broad range of pharmacological properties. The unique distribution and pharmacological efficacy of coumarins attract natural product hunters, resulting in the identification of numerous natural coumarins from different natural sources in the last three decades, especially those with anti-breast cancer properties. Inspired by this, numerous synthetic derivatives based on coumarins have been developed by medicinal chemists all around the globe, showing promising anti-breast cancer efficacy. This review is primarily focused on the development of coumarin-inspired anti-breast cancer agents in the last three decades, especially highlighting design strategies, mechanistic insights, and their structure-activity relationship. Natural coumarins having anti-breast cancer efficacy are also briefly highlighted. This review will act as a guideline for researchers and medicinal chemists in designing optimum coumarin-based potent and safer anti-breast cancer agents.

14.
Chem Biol Drug Des ; 102(3): 606-639, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37220949

RESUMEN

Fungal infections are posing serious threat to healthcare system due to emerging resistance among available antifungal agents. Among available antifungal agents in clinical practice, azoles (diazole, 1,2,4-triazole and tetrazole) remained most effective and widely prescribed antifungal agents. Now their associated side effects and emerging resistance pattern raised a need of new and potent antifungal agents. Lanosterol 14α-demethylase (CYP51) is responsible for the oxidative removal of 14α-methyl group of sterol precursors lanosterol and 24(28)-methylene-24,25-dihydrolanosterol in ergosterol biosynthesis hence an essential component of fungal life cycle and prominent target for antifungal drug development. This review will shed light on various azole- as well as non-azoles-based derivatives as potential antifungal agents that target fungal CYP51. Review will provide deep insight about structure activity relationship, pharmacological outcomes, and interactions of derivatives with CYP51 at molecular level. It will help medicinal chemists working on antifungal development in designing more rational, potent, and safer antifungal agents by targeting fungal CYP51 for tackling emerging antifungal drug resistance.


Asunto(s)
Antifúngicos , Lanosterol , Antifúngicos/farmacología , Antifúngicos/química , Esterol 14-Desmetilasa/química , Azoles/farmacología , Azoles/química , Desarrollo de Medicamentos
15.
Nat Prod Res ; 37(16): 2795-2800, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36214700

RESUMEN

Induction of hypersensitivity reactions (may be fatal too) by specific XO inhibitors has led to development of new molecules that are efficacious and have safer ADME profile. Among natural compounds, biologically active Alkannin/Shikonin (A/S) derivatives have unexplored XO inhibition potential. Therefore, their iso-hexenylnaphthazarin nucleus was studied and found that the nucleus is similar to that of allopurinol, signifying the XO inhibitory potential of these derivatives. For confirmation of their potential, ß,ß-dimethylacrylshikonin and deoxyshikonin were successfully isolated and characterised from Arnebia euchroma (Royle.) Johnst. (Boraginaceae) and were evaluated for in vitro XO inhibitory potential. ß,ß-dimethylacrylshikonin and deoxyshikonin showed a good XO inhibition potential with IC50 values of 7.475 ± 1.46 µg/mL and 4.487 ± 0.88 µg/mL, respectively. Results also validated the pharmacophore hypothesis, and it was concluded that nucleus iso-hexenylnaphthazarin can be remodelled for optimising the efficacy.

16.
ACS Chem Neurosci ; 14(18): 3291-3317, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37683129

RESUMEN

Alzheimer's disease is a most prevalent form of dementia all around the globe and currently poses a significant challenge to the healthcare system. Currently available drugs only slow the progression of this disease rather than provide proper containment. Identification of multiple targets responsible for this disease in the last three decades established it as a multifactorial neurodegenerative disorder that needs novel multifunctional agents for its management and the possible reason for the failure of currently available single target clinical drugs. 1,2,3-Triazole is a miraculous nucleus in medicinal chemistry and the first choice for development of multifunctional hybrid molecules. Apart from that, it is an integral component of various drugs in clinical trials as well as in clinical practice. This review is focused on the pathogenesis of Alzheimer's disease and 1,2,3-triazole containing derivatives developed in recent decades as potential anti-Alzheimer's agents. The review will provide (A) precise insight of various established targets of Alzheimer's disease including cholinergic, amyloid, tau, monoamine oxidases, glutamate, calcium, and reactive oxygen species hypothesis and (B) design hypothesis, structure-activity relationships, and pharmacological outcomes of 1,2,3-triazole containing multifunctional anti-Alzheimer's agents. This review will provide a baseline for various research groups working on Alzheimer's drug development in designing potent, safer, and effective multifunctional anti-Alzheimer's candidates of the future.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Proteínas Amiloidogénicas , Calcio , Ácido Glutámico , Triazoles/farmacología
17.
Chem Biol Drug Des ; 100(3): 443-468, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35763448

RESUMEN

Inhibition of xanthine oxidase (XO) is an effective and most prominent therapeutic approach for the management of gout. Discovery of its association in the pathophysiology of diabetes, cardiovascular disorders, etc., widened its therapeutic horizons. Limited drug candidates in clinical practice along with side effects forced researchers to develop more efficacious and safer XO inhibitors for the management of gout and other disorders associated with XO hyperactivity. In this regard, this review focus on (a) various drug candidates in clinical practice and under clinical trials, (b) Development of various heterocyclic motifs as XO inhibitors in last two decades and (c) various patented synthetic XO inhibitors.


Asunto(s)
Gota , Xantina Oxidasa , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Gota/tratamiento farmacológico , Humanos
18.
Expert Opin Ther Pat ; 32(10): 1079-1095, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36189616

RESUMEN

INTRODUCTION: Dihydrofolate reductase (DHFR) plays an important role in the biosynthesis of amino acid and folic acid. It participates by reducing dihydrofolate to tetrahydrofolate, in the presence of nicotinamide dinucleotide phosphate cofactor, and has been verified by various clinical studies to use DHFR as a target for the treatment of cancer and various bacterial infections. AREA COVERED: In this review, we have disclosed patents of synthetics and natural DHFR inhibitors with diaminopyrimidine and quinazoline nucleus from 2001. Additionally, this review highlights the clinical progression of numerous DHFR inhibitors received from the last five years. EXPERT OPINION: From 2001 to 2021, numerous active chemical scaffolds have been introduced and are exposed as lead candidates that have entered clinical trials as potent DHFR inhibitors. Moreover, researchers have paid considerable attention to the development of a new class of DHFR inhibitors with higher selectivity and potency. This development includes synthesis of synthetic as well as natural compounds that are potent DHFR inhibitors. On the basis of literature review, we can anticipate that there are a huge number of novel active molecules available for the future that could possess superior abilities to target this enzyme with a profound pharmacological profile.


Asunto(s)
Antagonistas del Ácido Fólico , Humanos , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/química , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Patentes como Asunto , Ácido Fólico , Aminoácidos , Tetrahidrofolatos , Quinazolinas , Niacinamida , Fosfatos
19.
ACS Chem Neurosci ; 13(6): 733-750, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35195392

RESUMEN

In continuous efforts to develop anti-Alzheimer's agents, we rationally designed and synthesized a series of multitargeting molecules by incorporating the essential molecular features of the standard drug donepezil. Among the series, compound 4b showed multitargeting properties to act as an anti-Alzheimer's agent, which is better tolerable in vivo than donepezil. Acetylcholinesterase (AChE) inhibition data showed that compound 4b inhibits the enzyme with a half-maximal inhibitory concentration (IC50) value of 0.78 µM and also showed DNA protection, which was confirmed through the DNA nicking assay, suggesting the protective effect of 4b against oxidative DNA damage. Compound 4b also showed 53.04% inhibition against Aß1-42 aggregations, which was found comparable to that of the standard compound curcumin. Molecular dynamics simulations were performed to check the stability of compound 4b with the enzyme AChE, which showed that the enzyme-ligand complex is stable enough to block the hydrolysis of acetylcholine in the brain. Its higher LD50 cutoff value (50 mg/kg) in comparison to donepezil (LD50: 25 mg/kg) made it safer, suggesting that it can be used in further clinical experiments. To evaluate its anti-Alzheimer property, a mice model with melamine-induced cognitive dysfunction was used, and Morris water maze and Rotarod tests were performed. A significant improvement in memory was observed after the treatment with compound 4b and donepezil. The study postulated that the introduction of important structural features of donepezil (dimethoxyindanone moiety as ring-A) embarked with terminal aromatic ether (ring-B and ring-C) made 4b a multitargeting molecule that offers a way for developing alternative therapeutics in the future against Alzheimer's disease (AD).


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Animales , Inhibidores de la Colinesterasa/uso terapéutico , ADN , Donepezilo/uso terapéutico , Indanos , Ratones , Relación Estructura-Actividad
20.
Nat Prod Res ; 36(18): 4804-4808, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34906016

RESUMEN

Novel coronavirus disease, a serious challenge for the healthcare system, has diverted all the researchers toward the exploration of potential targets, compounds or vaccines for the management of this disease. Mpro enzyme was found to be crucial for replication of this virus which makes this enzyme an attractive drug target for SARS-CoV-2. Diverse pharmacological profile of Alkannin/shikonin (A/S) derivatives build up curiosity to study their antiviral profile. Therefore, current study utilises various computational tools to screen and evaluate all the discovered A/S derivatives to inhibit the Mpro enzyme for its anti-viral activity. Results revealed that the A/S has a very good tendency to inhibit the catalytic activity of the enzyme. Moreover, (5 R,6R)-5,8-dihydroxy-6-methoxy-3,4,5,6-tetrahydro-2H-benzo[a]anthracene-1, 7, 12-trione, an A/S derivative was found to possess drug-likeliness properties and a good ADME profile. Moreover, its complex with Mpro enzyme was found stable for 50 ns which makes it a very promising ligand to treat COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas , Humanos , Simulación del Acoplamiento Molecular , Naftoquinonas , Inhibidores de Proteasas/farmacología , ARN Viral , Proteínas no Estructurales Virales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA