Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Arch Microbiol ; 204(6): 337, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35587835

RESUMEN

Yeasts can produce toxins in protein or glycoprotein structures that can act as an inhibitor on some bacteria and yeast species. The effects of those toxins on the growth of pathogenic and food spoilage microorganisms are subject to various studies. Metschnikowia pulcherrima was determined to be a killer toxin-producing yeast that was tested against three selected microorganisms, namely Escherichia coli Type-I, Micrococcus luteus and Candida albicans. The killer toxin only showed inhibitory activity against M. luteus. Different pH (5-6-7-8), temperature (20-25-30-35 °C) and carbon source (glucose-glycerol-ethanol-acetate) combinations were applied to stimulate the growth and toxin production of the killer yeast. The greatest increase among the different combinations was obtained at 20 °C and pH 7 when glycerol was used as the main carbon source. It was then also tested against other pathogen indicators or pathogens under these conditions. The killer toxin was partially purified by ethanol precipitation and showed inhibitory activity against M. luteus (36 mm). According to the protein profile obtained by SDS-PAGE, the molecular weight of the inhibitor toxin was measured about 7.4 kDa. The molecular weight with amino acid sequence of the killer toxin was 10.3 kDa and determined by MALDI-TOF mass spectrometry.


Asunto(s)
Glicerol , Metschnikowia , Carbono/metabolismo , Escherichia coli , Etanol/metabolismo , Glicerol/metabolismo , Levaduras
4.
Expert Opin Drug Deliv ; 21(7): 1053-1068, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39049741

RESUMEN

INTRODUCTION: Microneedles (MNs) are miniaturized, painless, and minimally invasive platforms that have attracted significant attention over recent decades across multiple fields, such as drug delivery, disease monitoring, disease diagnosis, and cosmetics. Several manufacturing methods have been employed to create MNs; however, these approaches come with drawbacks related to complicated, costly, and time-consuming fabrication processes. In this context, employing additive manufacturing (AM) technology for MN fabrication allows for the quick production of intricate MN prototypes with exceptional precision, providing the flexibility to customize MNs according to the desired shape and dimensions. Furthermore, AM demonstrates significant promise in the fabrication of sophisticated transdermal drug delivery systems and medical devices through the integration of MNs with various technologies. AREAS COVERED: This review offers an extensive overview of various AM technologies with great potential for the fabrication of MNs. Different types of MNs and the materials utilized in their fabrication are also discussed. Recent applications of 3D-printed MNs in the fields of transdermal drug delivery and biosensing are highlighted. EXPERT OPINION: This review also mentions the critical obstacles, including drug loading, biocompatibility, and regulatory requirements, which must be resolved to enable the mass-scale adoption of AM methods for MN production, and future trends.


Asunto(s)
Administración Cutánea , Sistemas de Liberación de Medicamentos , Microinyecciones , Agujas , Impresión Tridimensional , Sistemas de Liberación de Medicamentos/instrumentación , Humanos , Microinyecciones/instrumentación , Animales , Diseño de Equipo , Técnicas Biosensibles , Preparaciones Farmacéuticas/administración & dosificación , Tecnología Farmacéutica
5.
Biomed Mater ; 19(4)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38838701

RESUMEN

Although different fabrication methods and biomaterials are used in scaffold development, hydrogels and electrospun materials that provide the closest environment to the extracellular matrix have recently attracted considerable interest in tissue engineering applications. However, some of the limitations encountered in the application of these methods alone in scaffold fabrication have increased the tendency to use these methods together. In this study, a bilayer scaffold was developed using 3D-printed gelatin methacryloyl (GelMA) hydrogel containing ciprofloxacin (CIP) and electrospun polycaprolactone (PCL)-collagen (COL) patches. The bilayer scaffolds were characterized in terms of chemical, morphological, mechanical, swelling, and degradation properties; drug release, antibacterial properties, and cytocompatibility of the scaffolds were also studied. In conclusion, bilayer GelMA-CIP/PCL-COL scaffolds, which exhibit sufficient porosity, mechanical strength, and antibacterial properties and also support cell growth, are promising potential substitutes in tissue engineering applications.


Asunto(s)
Antibacterianos , Materiales Biocompatibles , Ciprofloxacina , Gelatina , Hidrogeles , Ensayo de Materiales , Metacrilatos , Poliésteres , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Gelatina/química , Ciprofloxacina/farmacología , Ciprofloxacina/química , Poliésteres/química , Antibacterianos/farmacología , Antibacterianos/química , Materiales Biocompatibles/química , Hidrogeles/química , Porosidad , Metacrilatos/química , Colágeno/química , Animales , Humanos , Proliferación Celular/efectos de los fármacos
6.
Nanomaterials (Basel) ; 14(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607098

RESUMEN

Tympanic membrane (TM) perforations, primarily induced by middle ear infections, the introduction of foreign objects into the ear, and acoustic trauma, lead to hearing abnormalities and ear infections. We describe the design and fabrication of a novel composite patch containing photocrosslinkable gelatin methacryloyl (GelMA) and keratin methacryloyl (KerMA) hydrogels. GelMA-KerMA patches containing conical microneedles in their design were developed using the digital light processing (DLP) 3D printing approach. Following this, the patches were biofunctionalized by applying a coaxial coating with PVA nanoparticles loaded with gentamicin (GEN) and fibroblast growth factor (FGF-2) with the Electrohydrodynamic Atomization (EHDA) method. The developed nanoparticle-coated 3D-printed patches were evaluated in terms of their chemical, morphological, mechanical, swelling, and degradation behavior. In addition, the GEN and FGF-2 release profiles, antimicrobial properties, and biocompatibility of the patches were examined in vitro. The morphological assessment verified the successful fabrication and nanoparticle coating of the 3D-printed GelMA-KerMA patches. The outcomes of antibacterial tests demonstrated that GEN@PVA/GelMA-KerMA patches exhibited substantial antibacterial efficacy against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Furthermore, cell culture studies revealed that GelMA-KerMA patches were biocompatible with human adipose-derived mesenchymal stem cells (hADMSC) and supported cell attachment and proliferation without any cytotoxicity. These findings indicated that biofunctional 3D-printed GelMA-KerMA patches have the potential to be a promising therapeutic approach for addressing TM perforations.

7.
Front Bioeng Biotechnol ; 11: 1157541, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251572

RESUMEN

Microneedles (MNs) are micrometer-sized arrays that can penetrate the skin in a minimally invasive manner; these devices offer tremendous potential for the transdermal delivery of therapeutic molecules. Although there are many conventional techniques for manufacturing MNs, most of them are complicated and can only fabricate MNs with specific geometries, which restricts the ability to adjust the performance of the MNs. Herein, we present the fabrication of gelatin methacryloyl (GelMA) MN arrays using the vat photopolymerization 3D printing technique. This technique allows for the fabrication of high-resolution and smooth surface MNs with desired geometries. The existence of methacryloyl groups bonded to the GelMA was verified by 1H NMR and FTIR analysis. To examine the effects of varying needle heights (1000, 750, and 500 µm) and exposure times (30, 50, and 70 s) on GelMA MNs, the height, tip radius, and angle of the needles were measured; their morphological and mechanical properties were also characterized. It was observed that as the exposure time increased, the height of the MNs increased; moreover, sharper tips were obtained and tip angles decreased. In addition, GelMA MNs exhibited good mechanical performance with no breakage up to 0.3 mm displacement. These results indicate that 3D printed GelMA MNs have great potential for transdermal delivery of various therapeutics.

8.
Turk J Pediatr ; 53(3): 317-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21980815

RESUMEN

Seroprevalence data indicate that West Nile virus (WNV) activity is present in Turkey; however, no pediatric cases of WNV infection have been reported to date. WNV is an emerging flavivirus in Turkey, and in September2010, the Turkish Ministry of Health reported the first seven cases of laboratory-confirmed WNV infection from five different cities in the western part of the country. This is the first report of a child from central Anatolia, indicating the existence of the virus in other regions of the country.


Asunto(s)
Fiebre del Nilo Occidental/epidemiología , Niño , Femenino , Humanos , Estudios Seroepidemiológicos , Turquía/epidemiología , Virus del Nilo Occidental
9.
Int J Food Microbiol ; 345: 109154, 2021 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-33735783

RESUMEN

A novel killer toxin produced by yeast Metschnikowia pulcherrima was purified and added into ready to cook meatballs to enhance their microbial safety and extension of their shelf life. The agent was added into ready to cook meatballs at two different concentrations (1%-K1 and 2%-K2). The results of those two groups were compared to the control group (K0) lacking the killer toxin. Physical, chemical and microbiological analyses were carried out in meat dough and all analyses were repeated at two day intervals during 10 day-storage at +4 °C. Addition of inhibitor compound in meat dough decreased the numbers of total aerobic mesophillic bacteria, yeast and molds and lactic acid bacteria. Staphylococci/Micrococci, coliform bacteria and total psychrotrophic bacterial counts of the samples were determined as well. Results showed that all indicators of microbial deterioration were found to be higher in K1 group than K2 group, revealing that there was an inverse correlation between the concentration of killer toxin and the number of microorganisms causing spoilage. In addition to 1 log decrease in the number of microorganisms in toxin added groups, the high TBARS values of the control group also showed the effectiveness of the toxin. Toxic effect analysis results showed that the killer toxin had no toxic effect on L929 mouse fibroblast cells after 24h exposure.


Asunto(s)
Antibacterianos/farmacología , Enterobacteriaceae/efectos de los fármacos , Metschnikowia/metabolismo , Micotoxinas/farmacología , Staphylococcus/efectos de los fármacos , Animales , Bovinos , Línea Celular , Recuento de Colonia Microbiana , Almacenamiento de Alimentos , Carne/microbiología , Ratones
10.
Mater Sci Eng C Mater Biol Appl ; 110: 110741, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32204049

RESUMEN

Spinal cord injury (SCI) is a disease of the central nervous system (CNS) that has not yet been treated successfully. In the United States, almost 450,000 people suffer from SCI. Despite the development of many clinical treatments, therapeutics are still at an early stage for a successful bridging of damaged nerve spaces and complete recovery of nerve functions. Biomimetic 3D scaffolds have been an effective option in repairing the damaged nervous system. 3D scaffolds allow improved host tissue engraftment and new tissue development by supplying physical support to ease cell function. Recently, 3D bioprinting techniques that may easily regulate the dimension and shape of the 3D tissue scaffold and are capable of producing scaffolds with cells have attracted attention. Production of biologically more complex microstructures can be achieved by using 3D bioprinting technology. Particularly in vitro modeling of CNS tissues for in vivo transplantation is critical in the treatment of SCI. Considering the potential impact of 3D bioprinting technology on neural studies, this review focus on 3D bioprinting methods, bio-inks, and cells widely used in neural tissue engineering and the latest technological applications of bioprinting of nerve tissues for the repair of SCI are discussed.


Asunto(s)
Bioimpresión , Tejido Nervioso/metabolismo , Impresión Tridimensional , Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Ingeniería de Tejidos , Andamios del Tejido/química , Humanos , Tejido Nervioso/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA