Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38611051

RESUMEN

Tamoxifen, a selective estrogen receptor modulator (SERM), is commonly used as an adjuvant drug therapy for estrogen-receptor-positive breast cancers. Though effective at reducing the rate of cancer recurrence, patients often report unwanted cognitive and affective side effects. Despite this, the impacts of chronic tamoxifen exposure on the brain are poorly understood, and rodent models of tamoxifen exposure do not replicate the chronic oral administration seen in patients. We, therefore, used long-term ad lib consumption of medicated food pellets to model chronic tamoxifen exposure in a clinically relevant way. Adult female Long-Evans Hooded rats consumed tamoxifen-medicated food pellets for approximately 12 weeks, while control animals received standard chow. At the conclusion of the experiment, blood and brain samples were collected for analyses. Blood tamoxifen levels were measured using a novel ultra-performance liquid chromatography-tandem mass spectrometry assay, which found that this administration paradigm produced serum levels of tamoxifen similar to those in human patients. In the brain, brain-derived neurotrophic factor (BDNF) was visualized in the hippocampus using immunohistochemistry. Chronic oral tamoxifen treatment resulted in a decrease in BDNF expression across several regions of the hippocampus. These findings provide a novel method of modeling and measuring chronic oral tamoxifen exposure and suggest a putative mechanism by which tamoxifen may cause cognitive and behavioral changes reported by patients.

2.
Schizophr Bull ; 49(Suppl_2): S93-S103, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36946530

RESUMEN

BACKGROUND AND HYPOTHESIS: Quantitative acoustic and textual measures derived from speech ("speech features") may provide valuable biomarkers for psychiatric disorders, particularly schizophrenia spectrum disorders (SSD). We sought to identify cross-diagnostic latent factors for speech disturbance with relevance for SSD and computational modeling. STUDY DESIGN: Clinical ratings for speech disturbance were generated across 14 items for a cross-diagnostic sample (N = 334), including SSD (n = 90). Speech features were quantified using an automated pipeline for brief recorded samples of free speech. Factor models for the clinical ratings were generated using exploratory factor analysis, then tested with confirmatory factor analysis in the cross-diagnostic and SSD groups. The relationships between factor scores and computational speech features were examined for 202 of the participants. STUDY RESULTS: We found a 3-factor model with a good fit in the cross-diagnostic group and an acceptable fit for the SSD subsample. The model identifies an impaired expressivity factor and 2 interrelated disorganized factors for inefficient and incoherent speech. Incoherent speech was specific to psychosis groups, while inefficient speech and impaired expressivity showed intermediate effects in people with nonpsychotic disorders. Each of the 3 factors had significant and distinct relationships with speech features, which differed for the cross-diagnostic vs SSD groups. CONCLUSIONS: We report a cross-diagnostic 3-factor model for speech disturbance which is supported by good statistical measures, intuitive, applicable to SSD, and relatable to linguistic theories. It provides a valuable framework for understanding speech disturbance and appropriate targets for modeling with quantitative speech features.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Habla , Lenguaje , Esquizofrenia/complicaciones , Trastornos Psicóticos/complicaciones , Análisis Factorial
3.
Schizophrenia (Heidelb) ; 8(1): 58, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35853912

RESUMEN

Graphical representations of speech generate powerful computational measures related to psychosis. Previous studies have mostly relied on structural relations between words as the basis of graph formation, i.e., connecting each word to the next in a sequence of words. Here, we introduced a method of graph formation grounded in semantic relationships by identifying elements that act upon each other (action relation) and the contents of those actions (predication relation). Speech from picture descriptions and open-ended narrative tasks were collected from a cross-diagnostic group of healthy volunteers and people with psychotic or non-psychotic disorders. Recordings were transcribed and underwent automated language processing, including semantic role labeling to identify action and predication relations. Structural and semantic graph features were computed using static and dynamic (moving-window) techniques. Compared to structural graphs, semantic graphs were more strongly correlated with dimensional psychosis symptoms. Dynamic features also outperformed static features, and samples from picture descriptions yielded larger effect sizes than narrative responses for psychosis diagnoses and symptom dimensions. Overall, semantic graphs captured unique and clinically meaningful information about psychosis and related symptom dimensions. These features, particularly when derived from semi-structured tasks using dynamic measurement, are meaningful additions to the repertoire of computational linguistic methods in psychiatry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA