Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 25(20): 5259-5268, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30693581

RESUMEN

The electronic nature of Ni π-complexes is underexplored even though these complexes have been widely postulated as intermediates in organometallic chemistry. Herein, the geometric and electronic structure of a series of nickel π-complexes, Ni(dtbpe)(X) (dtbpe=1,2-bis(di-tert-butyl)phosphinoethane; X=alkene or carbonyl containing π-ligands), is probed using a combination of 31 P NMR, Ni K-edge XAS, Ni Kß XES, and DFT calculations. These complexes are best described as square planar d10 complexes with π-backbonding acting as the dominant contributor to M-L bonding to the π-ligand. The degree of backbonding correlates with 2 JPP from NMR and the energy of the Ni 1s→4pz pre-edge in the Ni K-edge XAS data, and is determined by the energy of the π*ip ligand acceptor orbital. Thus, unactivated olefinic ligands tend to be poor π-acids whereas ketones, aldehydes, and esters allow for greater backbonding. However, backbonding is still significant even in cases in which metal contributions are minor. In such cases, backbonding is dominated by charge donation from the diphosphine, which allows for strong backdonation, although the metal centre retains a formal d10 electronic configuration. This ligand-induced backbonding can be formally described as a 3-centre-4-electron (3c-4e) interaction, in which the nickel centre mediates charge transfer from the phosphine σ-donors to the π*ip ligand acceptor orbital. The implications of this bonding motif are described with respect to both structure and reactivity.

2.
Phys Chem Chem Phys ; 21(5): 2345-2350, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30657501

RESUMEN

The structural organization and phase behaviour of an amphiphilic zwitterionic quinonemonoimine at the air/water interface are presented. Brewster angle microscopy reveals multiple co-existing phases are observed over the entire isotherm while grazing incidence X-ray diffraction (GIXD) shows that these comprise both tilted, untilted and multilayer structures with crystalline headgroups. Despite the heterogeneity, the phase transitions are highly reversible over multiple cycles.

3.
Inorg Chem ; 55(1): 13-5, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26670683

RESUMEN

Herein, we report experimental, spectroscopic, and computational data that indicate that a rhodium ethylene complex, formally described as rhodium(I) and which forms a 2-rhoda(III) oxetane following reaction with H2O2, is more accurately described as a rhodium(III) metallacyclopropane. X-ray absorption spectroscopy clearly demonstrates a change in the oxidation state at rhodium following ligand coordination with tris(2-pyridylmethyl)amine. Both NMR and density functional theory studies suggest a high energy barrier to rotation of the coordinated ethylene, which is attributed to large geometric and electronic reorganization resulting from the loss of π-back-bonding. These results imply that the role of H2O2 in the formation of 2-rhoda(III) oxetanes is to oxidize the C2H4 fragment rather than the metal center, as has been previously suggested.

4.
Inorg Chem ; 54(23): 11574-80, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26599813

RESUMEN

Surprisingly, the anticancer activity of half-sandwich Ru arene complexes [(η(6)-arene)Ru(en)Cl](+) appears to be promoted and not inhibited by binding to the intracellular thiol glutathione. Labilization of the Ru-S bond allowing DNA binding appeared to be initiated by oxygenation of the thiolate ligand, although oxidation by itself did not seem to weaken the Ru-S bond. In this study, we have investigated the solvation and acidic perturbations of mono (sulfenato) and bis (sulfinato) oxidized species of [(η(6)-arene)Ru(en) (SR)](+) complex in the presence of Brønsted and Lewis acids. Sulfur K-edge X-ray absorption spectroscopy together with density functional theory calculations show that solvation and acidic perturbation of sulfenato species produce a significant decrease in the S3p character of the Ru-S bond (Ru4dσ* ← S1s charge donation). Also there is a drastic fall in the overall ligand charge donation to the metal center in both sulfenato and sulfinato species. Our investigation clearly shows that mono oxidized sulfenato species are most susceptible to ligand exchange, hence providing a possible pathway for in vivo activation and biological activity.


Asunto(s)
Antineoplásicos/química , Compuestos Organometálicos/química , Rutenio/química , Ácidos Sulfénicos/química , Ácidos Sulfínicos/química , Ácidos de Lewis/química , Ligandos , Modelos Químicos , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X , Zinc/química
5.
J Chem Phys ; 138(21): 214302, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23758366

RESUMEN

Thiophenic compounds are major constituents of fossil fuels and pose problems for fuel refinement. The quantification and speciation of these compounds is of great interest in different areas such as biology, fossil fuels studies, geology, and archaeology. Sulfur 1s Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy has emerged as a qualitative and quantitative method for sulfur speciation. A firm understanding of the sulfur 1s NEXAFS spectra of organosulfur species is required for these analytical studies. To support this development, the sulfur 1s NEXAFS spectra of simple thiols and thioethers were previously examined, and are now extended to studies of thiophenic and aromatic thioether compounds, in the gas and condensed phases. High-resolution spectra have been further analyzed with the aid of Improved Virtual Orbital (IVO) and Δ(self-consistent field) ab initio calculations. Experimental sulfur 1s NEXAFS spectra show fine features predicted by calculation, and the combination of experiment and calculation has been used to improve the assignment of spectroscopic features important for the speciation and quantification of sulfur compounds. Systematic differences between gas and condensed phases are also explored; these differences suggest a significant role for conformational effects in the NEXAFS spectra of condensed species.


Asunto(s)
Sulfuros/química , Azufre/química , Estructura Molecular , Teoría Cuántica , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA