Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 24(4): 84, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949219

RESUMEN

Biopharmaceuticals are large, complex and labile therapeutic molecules prone to instability due to various factors during manufacturing. To ensure their safety, quality and efficacy, a wide range of critical quality attributes (CQAs) such as product concentration, aggregation, particle size, purity and turbidity have to be met. Size exclusion chromatography (SEC) is the gold standard to measure protein aggregation and degradation. However, other techniques such as dynamic light scattering (DLS) are employed in tandem to measure the particle size distribution (PSD) and polydispersity of biopharmaceutical formulations. In this study, the application of multi-angle dynamic light scattering (MADLS) was evaluated for the determination of particle size, particle concentration and aggregation in 3 different protein modalities, namely bovine serum albumin (BSA) and two biopharmaceuticals including a monoclonal antibody (mAb) and an enzyme. The obtained calibration curve (R2 > 0.95) for the particle number concentration of the 3 proteins and the observed correlation between MADLS and SEC (R2 = 0.9938) for the analysis of aggregation in the enzyme can be employed as a 3-in-1 approach to assessing particle size, concentration and aggregation for the screening and development of products while also reducing the number of samples and experiments required for analysis prior to other orthogonal tests.


Asunto(s)
Productos Biológicos , Dispersión Dinámica de Luz , Albúmina Sérica Bovina/química , Anticuerpos Monoclonales/análisis , Luz
2.
Langmuir ; 32(1): 329-37, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26653672

RESUMEN

The objective of this work is to demonstrate that conjugated polymer:fullerene hybrid nanoparticles encapsulated in the hydrophobic cores of triblock copolymer micelles may successfully act as spatially confined donor-acceptor systems capable of facilitating photoinduced charge carrier separation. To this end, aqueous dispersions of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) nanoparticles were first prepared by solubilization of the polymer in the cores of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymer, Pluronic F-127 micelles. A number of significant optical spectroscopic changes were observed on transfer of the conjugated polymer from a nonaqueous solvent to the aqueous micellar environment. These were primarily attributed to increased interchain interactions due to conjugated polymer chain collapse during encapsulation in the micellar cores. When prepared in buffer solution, the micelles exhibited good long-term collodial stability. When MEH-PPV micelles were blended by the addition of controlled amounts of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), the observed correspondence of photoluminescence emission quenching, quantum yield decreases, and emission lifetime shortening with increasing PCBM concentration indicated efficient photoinduced donor-to-acceptor charge transfer between MEH-PPV and the fullerenes in the cores of the micelles, an assignment that was confirmed by transient absorption spectroscopic monitoring of carrier photogeneration and recombination.

3.
Nanotechnology ; 27(30): 305603, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27306338

RESUMEN

The functionalization of polyfluorene (PFO) nanoparticles by coprecipitation of the conjugated polymer with an amphiphilic comb polymer, consisting of a hydrophobic polystyrene backbone with hydrophilic, carboxylic acid-terminated polyethylene oxide side-chains (PS-PEG-COOH), is investigated. The comb polymer affects the properties of the formed hybrid nanoparticles. Non-functionalized particles are typically larger (28 nm) than functionalized ones (20 nm); peak molar extinction coefficients are found to differ in a similar trend. Zeta potentials are negative, consistent with negative surface charge on PFO particles due to chemical defect formation, with additional charge on functionalized particles due to the pendant carboxylic acid groups. Emission quantum yields of functionalized particles are typically larger, consistent with lower efficiency of energy transfer to quenchers in smaller particles and weaker PFO interchain interactions due to chain dilution. The trend in per-particle fluorescence brightness values, as confirmed by single particle fluorescence imaging, reflects the nanoparticle extinction coefficients. Photostability studies on aqueous dispersions of hybrid particles indicate mild photobrightening under continuous illumination while PFO particles exhibit slow exponential emission decay. Functionalized particles are also resistant to aggregation during exposure to adenocarcinoma cells. Generally, the hybrid particles exhibit more favorable time-, pH- and medium-dependent stabilities, likely due to steric and electrostatic stabilization by PEG-carboxylic acid functionalities. Overall, the functionalized particles exhibit attractive properties: Reasonably small size, tight size distribution, high absorption cross section, radiative rate and emission quantum yield, excellent brightness and photostability, and good colloidal stability.

4.
ACS Appl Mater Interfaces ; 12(1): 1257-1269, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31802658

RESUMEN

Nanoparticle constructs for oral peptide delivery at a minimum must protect and present the peptide at the small intestinal epithelium in order to achieve oral bioavailability. In a reproducible, scalable, surfactant-free process, a core was formed with insulin in ratios with two established excipients and stabilizers, zinc chloride and l-arginine. Cross-linking was achieved with silica, which formed an outer shell. The process was reproducible across several batches, and physicochemical characterization of a single batch was confirmed in two independent laboratories. The silica-coated nanoparticles (SiNPs) entrapped insulin with high entrapment efficiency, preserved its structure, and released it at a pH value present in the small intestine. The SiNP delivered insulin to the circulation and reduced plasma glucose in a rat jejunal instillation model. The delivery mechanism required residual l-arginine in the particle to act as a permeation enhancer for SiNP-released insulin in the jejunum. The synthetic process was varied in terms of ratios of zinc chloride and l-arginine in the core to entrap the glucagon-like peptide 1 analogue, exenatide, and bovine serum albumin. SiNP-delivered exenatide was also bioactive in mice to some extent following oral gavage. The process is the basis for a platform for oral peptide and protein delivery.


Asunto(s)
Arginina/química , Nanopartículas/química , Dióxido de Silicio/química , Zinc/química , Administración Oral , Animales , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Femenino , Péptido 1 Similar al Glucagón/química , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Péptidos/química
5.
ACS Nano ; 10(4): 4660-71, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-26959685

RESUMEN

Observing structural integrity of nanoparticles is essential in bionanotechnology but not always straightforward to measure in situ and in real-time. Fluorescent labels used for tracking intrinsically nonfluorescent nanomaterials generally do not allow simultaneous observation of integrity. Consequently, structural changes like degradation and disassembly cannot easily be followed in situ using fluorescence signals. We show that thioflavin T (ThT), a fluorophore and molecular rotor known to tag specific fibril structures in amyloids, can "label" the structural integrity of widely used and intrinsically nonfluorescent, silica nanoparticles (SiNPs). Entrapment of ThT in SiNPs controls the fluorohphore's relaxation pathway and leads to a red-shifted fluorescence spectrum providing real time information on SiNP integrity. The dynamic change of ThT fluorescence during degradation of doped SiNPs is found much higher than that of common labels fluorescein and rhodamine. Degradation kinetics of core-shell structures recorded by ThT fluorescence and light scattering prove the capability to clearly distinguish structural features during SiNPs degradation and allow obtaining degradation kinetics in vitro, in biological media, in serum, and in cells. The effect is transferable to different types of materials, here shown for ThT incorporated SiNPs with tightly tailorable sizes (9-100 nm), poly(lactic-co-glycolic acid) (PLGA) nanoparticles, poly(9-vinylcarbazole) (PVK) nanoparticles, and iron-doped-SiNPs (FeSiNPs). We thus suggest molecular rotors such as ThT as additional labels to effectively and easily sense nanoparticle structural status in situ and to enhance understanding and development of programmed nanoparticle disassembly in bionanotechnology.

6.
ACS Appl Mater Interfaces ; 7(23): 12702-7, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-25994251

RESUMEN

Fibrous peptide networks, such as the structural framework of self-assembled fluorenylmethyloxycarbonyl diphenylalanine (Fmoc-FF) nanofibrils, have mechanical properties that could successfully mimic natural tissues, making them promising materials for tissue engineering scaffolds. These nanomaterials have been determined to exhibit shear piezoelectricity using piezoresponse force microscopy, as previously reported for FF nanotubes. Structural analyses of Fmoc-FF nanofibrils suggest that the observed piezoelectric response may result from the noncentrosymmetric nature of an underlying ß-sheet topology. The observed piezoelectricity of Fmoc-FF fibrous networks is advantageous for a range of biomedical applications where electrical or mechanical stimuli are required.


Asunto(s)
Aminoácidos/química , Materiales Biocompatibles/química , Fluorenos/química , Nanofibras/química , Péptidos/química , Fenilalanina/análogos & derivados , Dicroismo Circular , Dipéptidos , Hidrogeles , Microscopía de Fuerza Atómica , Fenilalanina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA