Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Methods ; 203: 465-477, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34314827

RESUMEN

By providing a three-dimensional in vitro culture system with key features of the substantia nigra region in the brain, 3D neuronal organoids derived from human induced pluripotent stem cells (iPSCs) provide living neuronal tissue resembling the midbrain region of the brain. However, a major limitation of conventional brain organoid culture is that it is often labor-intensive, requiring highly specialized personnel for moderate throughput. Additionally, the methods published for long-term cultures require time-consuming maintenance to generate brain organoids in large numbers. With the increasing need for human midbrain organoids (hMOs) to better understand and model Parkinson's disease (PD) in a dish, there is a need to implement new workflows and methods to both generate and maintain hMOs, while minimizing batch to batch variation. In this study, we developed a method with microfabricated disks to scale up the generation of hMOs. This opens up the possibility to generate larger numbers of hMOs, in a manner that minimizes the amount of labor required, while decreasing variability and maintaining the viability of these hMOs over time. Taken together, producing hMOs in this manner opens up the potential for these to be used to further PD studies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Encéfalo , Humanos , Mesencéfalo , Neuronas
2.
Methods ; 203: 297-310, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34500068

RESUMEN

Amyotrophic lateral sclerosis (ALS) represents a complex neurodegenerative disorder with significant genetic heterogeneity. To date, both the genetic etiology and the underlying molecular mechanisms driving this disease remain poorly understood, although in recent years several studies have highlighted a number of genetic mutations causative for ALS. With these mutations pointing to potential pathways that may be affected within individuals with ALS, having the ability to generate human neurons and other disease relevant cells containing these mutations becomes even more critical if new therapies are to emerge. Recent developments with the advent of induced pluripotent stem cells (iPSCs) and clustered regularly interspaced short palindromic repeats (CRISPR) gene editing fields gave us the tools to introduce or correct a specific mutation at any site within the genome of an iPSC, and thus model the specific contribution of risk mutations. In this study we describe a rapid and efficient way to either introduce a mutation into a control line, or to correct an allele-specific mutation, generating an isogenic control line from patient-derived iPSCs with a given mutation. The mutations introduced were the G94A (also known as G93A) mutation into SOD1 or H517Q into FUS, and the mutation corrected was a patient iPSC line with I114T mutation in SOD1. A combination of small molecules and growth factors were used to guide a stepwise differentiation of the edited cells into motor neurons in order to demonstrate that disease-relevant cells could be generated for downstream applications. Through a combination of iPSCs and CRISPR editing, the cells generated here will provide fundamental insights into the molecular mechanisms underlying neuron degeneration in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Mutación , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Flujo de Trabajo
3.
Analyst ; 142(10): 1746-1755, 2017 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-28443837

RESUMEN

Polymerase Chain Reaction (PCR) is a critical tool for biological research investigators but recently it also has been making a significant impact in clinical, veterinary and agricultural applications. Plasmonic PCR, which employs the very efficient heat transfer of optically irradiated metallic nanoparticles, is a simple and powerful methodology to drive PCR reactions. The scalability of next generation plasmonic PCR technology will introduce various forms of PCR applications ranging from small footprint portable point of care diagnostic devices to large footprint central laboratory multiplexing devices. In a significant advance, we have introduced a real time plasmonic PCR and explored the ability of ultra-fast cycling compatible with both label-free and fluorescence-based monitoring of amplicon production. Furthermore, plasmonic PCR has been substantially optimized to now deliver a 30 cycle PCR in 54 seconds, with a detectable product. The advances described here will have an immediate impact on the further development of the use of plasmonic PCR playing a critical role in rapid point of care diagnostics.

4.
Hum Genomics ; 8: 9, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24885908

RESUMEN

Understanding genotype/phenotype relationships has become more complicated as increasing amounts of inter- and intra-tissue genetic heterogeneity have been revealed through next-generation sequencing and evidence showing that factors such as epigenetic modifications, non-coding RNAs and RNA editing can play an important role in determining phenotype. Such findings have challenged a number of classic genetic assumptions including (i) analysis of genomic sequence obtained from blood is an accurate reflection of the genotype responsible for phenotype expression in an individual; (ii) that significant genetic alterations will be found only in diseased individuals, in germline tissues in inherited diseases, or in specific diseased tissues in somatic diseases such as cancer; and (iii) that mutation rates in putative disease-associated genes solely determine disease phenotypes. With the breakdown of our traditional understanding of genotype to phenotype relationships, it is becoming increasingly apparent that new analytical tools will be required to determine the relationship between genotype and phenotypic expression. To this end, we are proposing that next-generation genetic database (NGDB) platforms be created that include new bioinformatics tools based on algorithms that can evaluate genetic heterogeneity, as well as powerful systems biology analysis tools to actively process and evaluate the vast amounts of both genomic and genomic-modifying information required to reveal the true relationships between genotype and phenotype.


Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Estudios de Asociación Genética , Genoma Humano , Humanos , Mutación , ARN no Traducido/genética
5.
Semin Cancer Biol ; 23(4): 279-85, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23791722

RESUMEN

Recent tumor genome sequencing confirmed that one tumor often consists of multiple cell subpopulations (clones) which bear different, but related, genetic profiles such as mutation and copy number variation profiles. Thus far, one tumor has been viewed as a whole entity in cancer functional studies. With the advances of genome sequencing and computational analysis, we are able to quantify and computationally dissect clones from tumors, and then conduct clone-based analysis. Emerging technologies such as single-cell genome sequencing and RNA-Seq could profile tumor clones. Thus, we should reconsider how to conduct cancer systems biology studies in the genome sequencing era. We will outline new directions for conducting cancer systems biology by considering that genome sequencing technology can be used for dissecting, quantifying and genetically characterizing clones from tumors. Topics discussed in Part 1 of this review include computationally quantifying of tumor subpopulations; clone-based network modeling, cancer hallmark-based networks and their high-order rewiring principles and the principles of cell survival networks of fast-growing clones.


Asunto(s)
Genoma Humano/genética , Neoplasias/genética , Análisis de Secuencia de ADN/métodos , Biología de Sistemas/métodos , Apoptosis/genética , Ciclo Celular/genética , Redes Reguladoras de Genes , Humanos , Modelos Genéticos , Neoplasias/patología , Análisis de la Célula Individual/métodos
6.
Semin Cancer Biol ; 23(4): 286-92, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23792107

RESUMEN

A tumor often consists of multiple cell subpopulations (clones). Current chemo-treatments often target one clone of a tumor. Although the drug kills that clone, other clones overtake it and the tumor recurs. Genome sequencing and computational analysis allows to computational dissection of clones from tumors, while singe-cell genome sequencing including RNA-Seq allows profiling of these clones. This opens a new window for treating a tumor as a system in which clones are evolving. Future cancer systems biology studies should consider a tumor as an evolving system with multiple clones. Therefore, topics discussed in Part 2 of this review include evolutionary dynamics of clonal networks, early-warning signals (e.g., genome duplication events) for formation of fast-growing clones, dissecting tumor heterogeneity, and modeling of clone-clone-stroma interactions for drug resistance. The ultimate goal of the future systems biology analysis is to obtain a 'whole-system' understanding of a tumor and therefore provides a more efficient and personalized management strategies for cancer patients.


Asunto(s)
Genoma Humano/genética , Neoplasias/genética , Análisis de Secuencia de ADN/métodos , Biología de Sistemas/métodos , Linaje de la Célula/genética , Redes Reguladoras de Genes , Humanos , Modelos Genéticos , Neoplasias/patología , Análisis de la Célula Individual/métodos , Microambiente Tumoral/genética
7.
Hum Mutat ; 34(4): 610-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23377847

RESUMEN

To examine the significance of intratumor genetic heterogeneity (ITGH) of the androgen receptor (AR) gene in breast cancer, patient-matched samples of laser capture microdissected breast tumor cells, adjacent normal breast epithelia cells, and peripheral blood leukocytes were sequenced using a novel next generation sequencing protocol. This protocol measured the frequency of distribution of a variable AR CAG repeat length, a functional polymorphism associated with breast cancer risk. All samples exhibited some degree of ITGH with up to 30 CAG repeat length variants identified. Each type of tissue exhibited a different distribution profile of CAG repeat lengths with substantial differences in the frequencies of zero and 18-25 CAG AR variants. Tissue differences in the frequency of ARs with each of these CAG repeat lengths were significant as measured by paired, twin t-tests. These results suggest that preferential selection of 18-25 CAG repeat length variants in breast tumors may be associated with breast cancer, and support the observation that shorter CAG repeats may protect against breast cancer. They also suggest that merely identifying variant genes will be insufficient to determine the critical mutational events of oncogenesis, which will require measuring the frequency of distribution of mutations within cancerous and matching normal tissues.


Asunto(s)
Neoplasias de la Mama/genética , Variación Genética , Receptores Androgénicos/genética , Repeticiones de Trinucleótidos , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/patología , Estudios de Casos y Controles , Femenino , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias
8.
Hum Mutat ; 33(5): 887-94, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22334387

RESUMEN

The current version of the androgen receptor gene (AR) mutations database is described. A major change to the database is that the nomenclature and numbering scheme now conforms to all Human Genome Variation Society norms. The total number of reported mutations has risen from 605 to 1,029 since 2004. The database now contains a number of mutations that are associated with prostate cancer (CaP) treatment regimens, while the number of AR mutations found in CaP tissues has more than doubled from 76 to 159. In addition, in a number of androgen insensitivity syndrome (AIS) and CaP cases, multiple mutations have been found within the same tissue samples. For the first time, we report on a disconnect within the AIS phenotype-genotype relationship among our own patient database, in that over 40% of our patients with a classic complete AIS or partial AIS phenotypes did not appear to have a mutation in their AR gene. The implications of this phenomenon on future locus-specific mutation database (LSDB) development are discussed, together with the concept that mutations can be associated with both loss- and gain-of-function, and the effect of multiple AR mutations within individuals. The database is available on the internet (http://androgendb.mcgill.ca), and a web-based LSDB with the variants using the Leiden Open Variation Database platform is available at http://www.lovd.nl/AR.


Asunto(s)
Bases de Datos Genéticas , Mutación Missense , Receptores Androgénicos/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Síndrome de Resistencia Androgénica/genética , Animales , Atrofia Bulboespinal Ligada al X/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Insuficiencia Ovárica Primaria/genética , Neoplasias de la Próstata/genética , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína/genética , Receptores Androgénicos/química , Receptores Androgénicos/metabolismo , Factores de Riesgo , Terminología como Asunto
9.
Analyst ; 137(19): 4475-81, 2012 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-22871797

RESUMEN

A plasmonic heating method for the polymerase chain reaction is demonstrated by the amplification of a section of the human androgen receptor gene. The thermocycler has a simple low-cost design, demonstrates excellent temperature stability and represents the first practical demonstration of plasmonic thermocycling.


Asunto(s)
ADN/análisis , Reacción en Cadena de la Polimerasa , Receptores Androgénicos/genética , Oro/química , Humanos , Nanopartículas del Metal/química , Temperatura
10.
Stem Cell Res ; 62: 102806, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35561458

RESUMEN

Autosomal recessive mutations in either PRKN or PINK1 are associated with early-onset Parkinson's disease. The corresponding proteins, PRKN, an E3 ubiquitin ligase, and the mitochondrial serine/threonine-protein kinase PINK1 play a role in mitochondrial quality control. Using CRISPR/CAS9 technology we generated three human iPSC lines from the well characterized AIW002-02 control line. These isogenic iPSCs contain homozygous knockouts of PRKN (PRKN-KO, CBIGi001-A-1), PINK1 (PINK1-KO, CBIGi001-A-2) or both PINK1 and PRKN (PINK1-KO/PRKN-KO, CBIGi001-A-3). The knockout lines display normal karyotypes, express pluripotency markers and upon differentiation into relevant brain cells or midbrain organoids may be valuable tools to model Parkinson's disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Sistemas CRISPR-Cas/genética , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mitofagia/genética , Enfermedad de Parkinson/genética , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
Stem Cell Res ; 64: 102919, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36130446

RESUMEN

The GBA gene encodes the lysosomal enzyme glucocerebrosidase (GCase), responsible for the hydrolysis of glucocerebroside to glucose and ceramide. Heterozygous GBA mutations have been associated with the development of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). We generated two induced pluripotent stem cell (iPSC) lines from PD patients carrying heterozygous GBA W378G or N370S mutations and subsequently produced isogenic control lines using CRISPR/Cas9 genome editing. The patient-derived iPSCs and isogenic control lines maintained full pluripotency, normal karyotypes, and differentiation capacity. All iPSC lines could be differentiated into dopaminergic neurons, thus providing valuable tools for studying PD pathogenesis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Humanos , Glucosa , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Glucosilceramidas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Enfermedad de Parkinson/patología
12.
Methods Protoc ; 4(3)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34287353

RESUMEN

Induced pluripotent stem cells (iPSCs) derived from human somatic cells have created new opportunities to generate disease-relevant cells. Thus, as the use of patient-derived stem cells has become more widespread, having a workflow to monitor each line is critical. This ensures iPSCs pass a suite of quality-control measures, promoting reproducibility across experiments and between labs. With this in mind, we established a multistep workflow to assess our newly generated iPSCs. Our workflow tests four benchmarks: cell growth, genomic stability, pluripotency, and the ability to form the three germline layers. We also outline a simple test for assessing cell growth and highlight the need to compare different growth media. Genomic integrity in the human iPSCs is analyzed by G-band karyotyping and a qPCR-based test for the detection of common karyotypic abnormalities. Finally, we confirm that the iPSC lines can differentiate into a given cell type, using a trilineage assay, and later confirm that each iPSC can be differentiated into one cell type of interest, with a focus on the generation of cortical neurons. Taken together, we present a multistep quality-control workflow to evaluate newly generated iPSCs and detail the findings on these lines as they are tested within the workflow.

13.
Sci Rep ; 11(1): 21293, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716395

RESUMEN

Quantifying changes in DNA and RNA levels is essential in numerous molecular biology protocols. Quantitative real time PCR (qPCR) techniques have evolved to become commonplace, however, data analysis includes many time-consuming and cumbersome steps, which can lead to mistakes and misinterpretation of data. To address these bottlenecks, we have developed an open-source Python software to automate processing of result spreadsheets from qPCR machines, employing calculations usually performed manually. Auto-qPCR is a tool that saves time when computing qPCR data, helping to ensure reproducibility of qPCR experiment analyses. Our web-based app ( https://auto-q-pcr.com/ ) is easy to use and does not require programming knowledge or software installation. Using Auto-qPCR, we provide examples of data treatment, display and statistical analyses for four different data processing modes within one program: (1) DNA quantification to identify genomic deletion or duplication events; (2) assessment of gene expression levels using an absolute model, and relative quantification (3) with or (4) without a reference sample. Our open access Auto-qPCR software saves the time of manual data analysis and provides a more systematic workflow, minimizing the risk of errors. Our program constitutes a new tool that can be incorporated into bioinformatic and molecular biology pipelines in clinical and research labs.


Asunto(s)
Biología Computacional/métodos , Análisis de Datos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Algoritmos , Humanos , Programas Informáticos
14.
Brain Commun ; 3(4): fcab223, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34632384

RESUMEN

SNCA, the first gene associated with Parkinson's disease, encodes the α-synuclein protein, the predominant component within pathological inclusions termed Lewy bodies. The presence of Lewy bodies is one of the classical hallmarks found in the brain of patients with Parkinson's disease, and Lewy bodies have also been observed in patients with other synucleinopathies. However, the study of α-synuclein pathology in cells has relied largely on two-dimensional culture models, which typically lack the cellular diversity and complex spatial environment found in the brain. Here, to address this gap, we use three-dimensional midbrain organoids, differentiated from human-induced pluripotent stem cells derived from patients carrying a triplication of the SNCA gene and from CRISPR/Cas9 corrected isogenic control iPSCs. These human midbrain organoids recapitulate key features of α-synuclein pathology observed in the brains of patients with synucleinopathies. In particular, we find that SNCA triplication human midbrain organoids express elevated levels of α-synuclein and exhibit an age-dependent increase in α-synuclein aggregation, manifested by the presence of both oligomeric and phosphorylated forms of α-synuclein. These phosphorylated α-synuclein aggregates were found in both neurons and glial cells and their time-dependent accumulation correlated with a selective reduction in dopaminergic neuron numbers. Thus, human midbrain organoids from patients carrying SNCA gene multiplication can reliably model key pathological features of Parkinson's disease and provide a powerful system to study the pathogenesis of synucleinopathies.

15.
Hum Genet ; 127(5): 491-501, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20099069

RESUMEN

It has been anticipated that new, much more sensitive, next generation sequencing (NGS) techniques, using massively parallel sequencing, will likely provide radical insights into the genetics of multifactorial diseases. While NGS has been used initially to analyze individual human genomes, and has revealed considerable differences between healthy individuals, we have used NGS to examine genetic variation within individuals, by sequencing tissues "in depth", i.e., oversequencing many thousands of times. Initial studies have revealed intra-tissue genetic heterogeneity, in the form of multiple variants of a single gene that exist as distinct "majority and "minority" variants. This highly specialized form of somatic mosaicism has been found within both cancer and normal tissues. If such genetic variation within individual tissues is widespread, it will need to be considered as a significant factor in the ontogeny of many multifactorial diseases, including cancer. The discovery of majority and minority gene variants and the resulting somatic cell heterogeneity in both normal and diseased tissues suggests that selection, as opposed to mutation, might be the critical event in disease ontogeny. We, therefore, are proposing a hypothesis to explain multifactorial disease ontogeny in which pre-existing multiple somatic gene variants, which may arise at a very early stage of tissue development, are eventually selected due to changes in tissue microenvironments.


Asunto(s)
Frecuencia de los Genes , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Genoma Humano , Mutación , Análisis de Secuencia de ADN , Animales , Neoplasias de la Mama/genética , Pruebas Genéticas , Variación Genética , Humanos , Pérdida de Heterocigocidad , Mosaicismo , Receptores Androgénicos/genética , Análisis de Secuencia de ADN/métodos , Repeticiones de Trinucleótidos/genética
16.
Biomed Microdevices ; 12(6): 967-75, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20652414

RESUMEN

We put forward an impedometric protein-based biosensor platform suitable for point-of-care diagnostics. A hand-held scale impedance reader system is described for the detection of corresponding physiochemical changes as the immobilized proteins bind to the analyte molecules in the proximity of the microfabricated electrodes. Specifically, we study the viability of this approach for glucose biosensing purposes using genetically engineered glucokinase as receptor proteins. The proposed reagent-less biosensor offers a high sensitivity of 0.5 mM glucose concentration level in the physiologically relevant range of 0.5 mM to 7.5 mM with less than 10 s response time.


Asunto(s)
Técnicas Biosensibles/métodos , Glucoquinasa/genética , Ingeniería de Proteínas , Algoritmos , Animales , Técnicas Biosensibles/instrumentación , Espectroscopía Dieléctrica , Impedancia Eléctrica , Electrodos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Enzimas Inmovilizadas/metabolismo , Diseño de Equipo , Glucoquinasa/química , Glucoquinasa/metabolismo , Glucosa/análisis , Oro/química , Humanos , Modelos Moleculares , Conformación Proteica , Programas Informáticos , Factores de Tiempo
17.
Exp Cell Res ; 315(2): 176-89, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19013454

RESUMEN

The proteasome is the primary subcellular organelle responsible for protein degradation. It is a dynamic assemblage of 34 core subunits and many differentially expressed, transiently interacting, modulatory proteins. This paper describes a novel affinity chromatography method for the purification of functional human holoproteasome complexes using mild conditions. Human proteasomes purified by this simple procedure maintained the ability to proteolytically process synthetic peptide substrates and degrade ubiquitinated parkin. Furthermore, the entire purification fraction was analyzed by mass spectrometry in order to identify proteasomal proteins and putative proteasome-interacting proteins. The mild purification conditions maintained transient physical interactions between holoproteasomes and a number of known modulatory proteins. In addition, several classes of putative interacting proteins co-purified with the proteasomes, including proteins with a role in the ubiquitin proteasome system for protein degradation or DNA repair. These results demonstrate the efficacy of using this affinity purification strategy for isolating functional human proteasomes and identifying proteins that may physically interact with human proteasomes.


Asunto(s)
Cromatografía de Afinidad/métodos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Sitios de Unión/genética , Catálisis/efectos de los fármacos , Línea Celular , Cromatografía de Afinidad/instrumentación , Cumarinas/farmacología , Reparación del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estabilidad de Enzimas , Humanos , Leupeptinas/farmacología , Oligopéptidos/farmacología , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/aislamiento & purificación , Unión Proteica , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Proteínas/aislamiento & purificación , Espectrometría de Masas en Tándem , Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
18.
ACS Chem Neurosci ; 11(13): 1871-1886, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32464049

RESUMEN

Kinases are highly tractable drug targets that have reached unparalleled success in fields such as cancer but whose potential has not yet been realized in neuroscience. There are currently 55 approved small molecule kinase-targeting drugs, 48 of which have an anticancer indication. The intrinsic complexity linked to central nervous system (CNS) drug development and a lack of validated targets has hindered progress in developing kinase inhibitors for CNS disorders when compared to other therapeutic areas such as oncology. Identification and/or characterization of new kinases as potential drug targets for neurodegenerative diseases will create opportunities for the development of CNS drugs in the future. The track record of kinase inhibitors in other disease indications supports the idea that with the best targets identified small molecule kinase modulators will become impactful therapeutics for neurodegenerative diseases. This Review highlights the imminent need for new therapeutics to treat the most prevalent neurodegenerative diseases as well as the promise of kinase inhibitors to address this need. With a focus on kinases that remain largely unexplored after decades of dedicated research in the kinase field, we offer specific examples of understudied kinases that are supported by patient-derived data as linked to Alzheimer's disease, Parkinson's disease, and/or amyotrophic lateral sclerosis. Finally, we show literature-reported high-quality inhibitors for several understudied kinases and suggest other kinases that merit additional medicinal chemistry efforts to elucidate their therapeutic potential.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Enfermedades del Sistema Nervioso Central , Enfermedades Neurodegenerativas , Descubrimiento de Drogas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico
19.
Front Cell Neurosci ; 14: 594304, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281561

RESUMEN

Traumatic brain injury (TBI) is the leading cause of disability and mortality in children and young adults and has a profound impact on the socio-economic wellbeing of patients and their families. Initially, brain damage is caused by mechanical stress-induced axonal injury and vascular dysfunction, which can include hemorrhage, blood-brain barrier disruption, and ischemia. Subsequent neuronal degeneration, chronic inflammation, demyelination, oxidative stress, and the spread of excitotoxicity can further aggravate disease pathology. Thus, TBI treatment requires prompt intervention to protect against neuronal and vascular degeneration. Rapid advances in the field of stem cells (SCs) have revolutionized the prospect of repairing brain function following TBI. However, more than that, SCs can contribute substantially to our knowledge of this multifaced pathology. Research, based on human induced pluripotent SCs (hiPSCs) can help decode the molecular pathways of degeneration and recovery of neuronal and glial function, which makes these cells valuable tools for drug screening. Additionally, experimental approaches that include hiPSC-derived engineered tissues (brain organoids and bio-printed constructs) and biomaterials represent a step forward for the field of regenerative medicine since they provide a more suitable microenvironment that enhances cell survival and grafting success. In this review, we highlight the important role of hiPSCs in better understanding the molecular pathways of TBI-related pathology and in developing novel therapeutic approaches, building on where we are at present. We summarize some of the most relevant findings for regenerative therapies using biomaterials and outline key challenges for TBI treatments that remain to be addressed.

20.
J Surg Res ; 154(1): 38-44, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19062046

RESUMEN

BACKGROUND: The X-linked human androgen receptor gene (AR) contains an exonic polymorphic trinucleotide CAG. The length of this encoded CAG tract inversely affects AR transcriptional activity. Colorectal carcinoma is known to express the androgen receptor, but data on somatic CAG repeat lengths variations in malignant and normal epithelial cells are still sporadic. MATERIALS AND METHODS: Using laser capture microdissection (LCM), epithelial cells from colorectal carcinoma and normal-appearing mucosa were collected from the fresh tissue of eight consecutive male patients undergoing surgery (mean age, 70 y; range, 54-82). DNA isolated from each LCM sample underwent subsequent PCR and DNA sequencing to precisely determine AR CAG repeat lengths and the presence of microsatellite instability (MSI). RESULTS: Different AR CAG repeat lengths were observed in colorectal carcinoma (ranging from 0 to 36 CAG repeats), mainly in the form of multiple shorter repeat lengths. This genetic heterogeneity (somatic mosaicism) was also found in normal-appearing colorectal mucosa. Half of the carcinoma cases examined tended to have a higher number of AR CAG repeat lengths with a wider range of repeat size variation compared to normal mucosa. MSI carcinomas tended to have longer median AR CAG repeat lengths (n = 17) compared to microsatellite stable carcinomas (n = 14), although the difference was not significant (P = 0.31, Mann-Whitney test). CONCLUSIONS: Multiple unique somatic mutations of the AR CAG repeats occur in colorectal mucosa and in carcinoma, predominantly resulting in shorter alleles. Colorectal epithelial cells carrying AR alleles with shorter CAG repeat lengths may be more androgen-sensitive and therefore have a growth advantage.


Asunto(s)
Carcinoma/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/cirugía , Mucosa Intestinal/patología , Mosaicismo , Receptores Androgénicos/genética , Repeticiones de Trinucleótidos , Neoplasias Colorrectales/patología , Células Epiteliales/patología , Exones , Humanos , Masculino , Inestabilidad de Microsatélites , Polimorfismo Genético , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA