Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Opt Express ; 30(3): 4202-4214, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35209662

RESUMEN

This work presents a "half-etch" horizontal slot waveguide design based on SiN, where only the upper SiN layer is etched to form a strip that confines the mode laterally. The numerical modeling, fabrication, and characterization of passive waveguiding components are described. This novel slot waveguide structure was designed with on-chip light amplification in mind, for example with an Er-doped oxide spacer layer. Proof-of-concept racetrack resonators were fabricated and characterized, showing quality factors up to 50,000 at critical coupling and residual losses of 4 dB/cm at wavelengths away from the N-H bond absorption peak in SiN, demonstrating the high potential of these horizontal slot waveguides for use in active integrated photonics.

2.
Opt Express ; 29(5): 7321-7326, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33726235

RESUMEN

Rare earth emitters are promising in integrated optics but require complex integration on silicon. In this work, we have fabricated an Y2O3:Eu3+ micro-emitter on SiO2 on Si substrate without etching. Since pulsed laser deposition produces a high quality layer at room temperature, material can be locally deposited on top of substrates by lift-off processing. After annealing, microstructures exhibit good crystallographic quality with controlled dimensions for light confinement and narrow emission. This works allows envisioning rare-earth doped micro-photonic structures directly integrated on silicon without etching, which opens the way to integration of new functional materials on silicon platform.

3.
Opt Express ; 28(19): 27506-27523, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32988043

RESUMEN

We demonstrate a graphene based electro-optic free-space modulator yielding a reflectance contrast of 20% over a strikingly large 250nm wavelength range, centered in the near-infrared telecom band. Our device is based on the original association of a planar Bragg reflector, topped with an electrically contacted double-layer graphene capacitor structure employing a high work-function oxide shown to confer a static doping to the graphene in the absence of an external bias, thereby reducing the switching voltage range to +/-1V. The device design, fabrication and opto-electric characterization is presented, and its behavior modeled using a coupled optical-electronic framework.

4.
Opt Express ; 28(26): 39739-39749, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379517

RESUMEN

Random lasing is an intriguing phenomenon occurring in disordered structures with optical gain in which light scattering provides the necessary feedback for lasing action. Unlike conventional lasers, random lasing systems emit in all directions due to light scattering. While this property can be desired in some cases, directional emission remains required for most applications. In a vertical microcavity containing the hybrid perovskite CH3NH3PbBr3, we report here the coupling of the emission of a random laser with a cavity polaritonic resonance, resulting in a directional random lasing, whose emission angles can be tuned by varying the cavity detuning and reach values as large as 15.8° and 22.4°.

5.
Opt Express ; 23(4): 4377-84, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25836474

RESUMEN

This paper presents a method to locally fine tune silicon-on-insulator (SOI) device layer thickness for the fabrication of optimal silicon photonics devices. Very precise control of thickness can be achieved with a modified local oxidation of silicon (LOCOS) process. The fabrication process is robust, complementary metal-oxide-semiconductor (CMOS) compatible and has the advantage of creating vertical tapers (~5.3 µm long for ~210 nm of height) required for impedance matching between sections of different height. The technology is demonstrated by fabricating a TE-pass filter.

6.
Opt Express ; 23(24): 31085-97, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26698737

RESUMEN

In this paper, we present a simple approach to study the coupling mechanisms between a plasmonic system consisting of bowtie nanoantennas and a photonic structure based on a Fabry-Perot interferometer. The nanoantenna array is represented by an equivalent homogeneous layer placed at the interferometer surface and yielding the effective dielectric function of the NA resonance. A phase matching model based on thin film interference is developed to describe the multi-layer interferences in the device and to analyze the fringe variations induced by the introduction of the plasmonic layer. The general model is validated by an experimental system consisting of a bowtie nanoantenna array and a porous-silicon-based interferometer. The optical response of this hybrid device exhibits both the enhancement induced by the nanoantenna resonance and the fringe pattern of the interferometer. Using the phase matching model, we demonstrate that strong coupling can occur in such a system, leading to fringe splitting. A study of the splitting strength and of the coupling behavior is given. The model study performed in this work enables to gain deeper understanding of the optical behavior of plasmonic/photonic hybrid devices.

7.
Nanotechnology ; 25(31): 315201, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25030432

RESUMEN

We propose and demonstrate a hybrid photonic-plasmonic nanolaser that combines the light harvesting features of a dielectric photonic crystal cavity with the extraordinary confining properties of an optical nano-antenna. For this purpose, we developed a novel fabrication method based on multi-step electron-beam lithography. We show that it enables the robust and reproducible production of hybrid structures, using a fully top-down approach to accurately position the antenna. Coherent coupling of the photonic and plasmonic modes is highlighted and opens up a broad range of new hybrid nanophotonic devices.

8.
ACS Appl Mater Interfaces ; 16(25): 32516-32523, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38867603

RESUMEN

Plasmonic metamaterials have opened new avenues in medical diagnostics. However, the transfer of the technology to the markets has been delayed due to multiple challenges. The need of bulky optics for signal reading from nanostructures patterned on submillimeter area limits the miniaturization of the devices. The use of objective-free optics can solve this problem, which necessitates large area patterning of the nanostructures. In this work, we utilize laser interference lithography (LIL) to pattern nanodisc-shaped metamaterial absorber nanoantennas over a large area (4 cm2) within minutes. The introduction of a sacrificial layer during the fabrication process enables an inverted hole profile and a well-controlled liftoff, which ensures perfectly defined uniform nanopatterning almost with no defects. Furthermore, we use a macroscopic reflection probe for optical characterization in the near-IR, including the detection of the binding kinematics of immunologically relevant proteins. We show that the photonic quality of the plasmonic nanoantennas commensurates with electron-beam-lithography-fabricated ones over the whole area. The refractive index sensitivity of the LIL-fabricated metasurface is determined as 685 nm per refractive index unit, which demonstrates ultrasensitive detection. Moreover, the fabricated surfaces can be used multiple times for biosensing without losing their optical quality. The combination of rapid and large area nanofabrication with a simple optical reading not only simplifies the detection process but also makes the biosensors more environmentally friendly and cost-effective. Therefore, the improvements provided in this work will empower researchers and industries for accurate and real-time analysis of biological systems.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Técnicas Biosensibles/métodos , Nanoestructuras/química , Resonancia por Plasmón de Superficie , Propiedades de Superficie , Refractometría
9.
Opt Express ; 21 Suppl 1: A179-89, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23389270

RESUMEN

In this paper the design, fabrication and characterization of a bioinspired overlayer deposited on a GaN LED is described. The purpose of this overlayer is to improve light extraction into air from the diode's high refractive-index active material. The layer design is inspired by the microstructure found in the firefly Photuris sp. The actual dimensions and material composition have been optimized to take into account the high refractive index of the GaN diode stack. This two-dimensional pattern contrasts other designs by its unusual profile, its larger dimensions and the fact that it can be tailored to an existing diode design rather than requiring a complete redesign of the diode geometry. The gain of light extraction reaches values up to 55% with respect to the reference unprocessed LED.


Asunto(s)
Luciérnagas/química , Galio/química , Indio/química , Luz , Refractometría/instrumentación , Animales , Diseño de Equipo , Semiconductores
10.
Nanomaterials (Basel) ; 13(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36678063

RESUMEN

In the present study, the effect of liquid filling of the nanopore network on thermal transport in porous Si layers was investigated by µ-Raman spectroscopy. The values of thermal conductivity of porous Si and porous Si-hexadecane composites were estimated by fitting the experimentally measured photoinduced temperature rise with finite element method simulations. As a result, filling the pores with hexadecane led to (i) an increase in the thermal conductivity of the porous Si-hexadecane composite in a wide range of porosity levels (40-80%) and (ii) a suppression of the characteristic laser-induced phase transition of Si from cubic to hexagonal form.

11.
ACS Omega ; 8(23): 21265-21276, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37332808

RESUMEN

In this article, the authors theoretically and experimentally investigated ways to improve the efficiency of porous silicon (PS)-based optical microcavity sensors as a 1D/2D host matrix for electronic tongue/nose systems. The transfer matrix method was used to compute reflectance spectra of structures with different [nLnH] sets of low nL and high nH bilayer refractive indexes, the cavity position λc, and the number of bilayers Nbi. Sensor structures were prepared by electrochemically etching a silicon wafer. The kinetics of adsorption/desorption processes of ethanol-water-based solution was monitored in real time with a reflectivity probe-based setup. It was theoretically and experimentally demonstrated that the sensitivity of the microcavity sensor is higher for structures with refractive indexes in the lower range (and the corresponding porosity values in the upper range). The sensitivity is also improved for structures with the optical cavity mode (λc) adjusted toward longer wavelengths. The sensitivity of a distributed Bragg reflector (DBR) with cavity increases for a structure with cavity position λc in the long wavelength region. The full width at half maximum (fwhmc) of the microcavity is smaller and the quality factor of microcavity (Qc) is higher for the DBR with a larger number of structure layers Nbi. The experimental results are in good agreement with the simulated data. We believe that our results can help in developing rapid, sensitive, and reversible electronic tongue/nose sensing devices based on a PS host matrix.

12.
Ultrasonics ; 114: 106403, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33677164

RESUMEN

Time-effective, unsupervised clustering techniques are exploited to discriminate nanometric metal disks patterned on a dielectric substrate. The discrimination relies on cluster analysis applied to time-resolved optical traces obtained from thermo-acoustic microscopy based on asynchronous optical sampling. The analysis aims to recognize similarities among nanopatterned disks and to cluster them accordingly. Each cluster is characterized by a fingerprint time-resolved trace, synthesizing the common features of the thermo-acoustics response of the composing elements. The protocol is robust and widely applicable, not relying on any specific knowledge of the physical mechanisms involved. The present route constitutes an alternative diagnostic tool for on-chip non-destructive testing of individual nano-objects.

13.
Opt Express ; 18 Suppl 3: A381-94, 2010 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21165068

RESUMEN

A new approach is proposed for the optimum addressing of a metallic nano-antenna (NA) with a free space optical beam. This approach relies on the use of an intermediate resonator structure that provides the appropriate modal conversion of the incoming beam. More precisely, the intermediate resonator consists in a Photonic Crystal (PC) membrane resonant structure that takes benefit of surface addressable slow Bloch modes. First, a phenomenological approach including a deep physical understanding of the NA-PC coupling and its optimization is presented. In a second step, the main features of this analysis are confirmed by numerical simulations (FDTD).

14.
Opt Express ; 18(26): 26879-86, 2010 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-21196965

RESUMEN

We report on the near- and far-field investigation of the slow Bloch modes associated with the Γ point of the Brillouin zone, for a honeycomb lattice photonic crystal, using near-field scanning optical microscopy (NSOM) and infra-red CCD camera. The array of doughnut-shaped monopolar mode (mode M) inside each unit cell, predicted previously by numerical simulation, is experimentally observed in the near-field by means of a metal-coated NSOM tip. In far-field, we detect the azimuthal polarization of the doughnut laser beam due to destructive and constructive interference of the mode radiating from the surface (mode TEM(01*)). A divergence of 2° for the laser beam and a mode size of (12.8 ± 1) µm for the slow Bloch mode at the surface of the crystal are also estimated.


Asunto(s)
Rayos Láser , Refractometría/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Miniaturización , Dispersión de Radiación
15.
Nanoscale Res Lett ; 11(1): 446, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27704487

RESUMEN

We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As2O3. Finally, a qualitative model is proposed to explain the porous As2O3 layer formation on p-GaAs substrate.

16.
J Colloid Interface Sci ; 447: 152-8, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25490855

RESUMEN

Latex nanoparticles (100nm and 200nm diameter) were precisely located onto the gold regions of micro and nanopatterned gold/silica substrates through surface chemical functionalizations. The gold patterns were selectively functionalized with alkylthiols bearing biotin or amine headgroups. This selective functionalization allowed the trapping of streptavidin- or carboxy-functionalized latex nanoparticles onto the gold structures with very little non-specific adsorption onto the surrounding silica. Quantitative data of nanoparticle capture on gold and silica, obtained through SEM image analysis, showed a one to two order of magnitude increase on gold with a similar low coverage on silica (non-specific adsorption) thanks to chemical functionalizations. Single nanoparticles were captured at the gap of dimer gold nanostructures.

17.
Nanoscale ; 7(3): 1181-92, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25488835

RESUMEN

In this article, we show for the first time, both theoretically and empirically, that plasmonic coupling can be used to generate Localized Surface Plasmon Resonances (LSPRs) in transition metal dimeric nano-antennas (NAs) over a broad spectral range (from the visible to the near infrared) and that the spectral position of the resonance can be controlled through morphological variation of the NAs (size, shape, interparticle distance). First, accurate calculations using the generalized Mie theory on spherical dimers demonstrate that we can take advantage of the plasmonic coupling to enhance LSPRs over a broad spectral range for many transition metals (Pt, Pd, Cr, Ni etc.). The LSPR remains broad for low interparticle distances and masks the various hybridized modes within the overall resonance. However, an analysis of the charge distribution on the surface of the nanoparticles reveals these modes and their respective contributions to the observed LSPR. In the case of spherical dimers, the transfer of the oscillator strengths from the "dipolar" mode to higher orders involves a maximum extinction cross-section for intermediate interparticle distances of a few nanometers. The emergence of the LSPR has been then experimentally illustrated with parallelepipedal NAs (monomers and dimers) made of various transition metals (Pt, Pd and Cr) and elaborated by nanolithography. Absolute extinction cross-sections have been measured with the spatial modulation spectroscopy technique over a broad spectral range (300-900 nm) for individual NAs, the morphology of which has been independently characterized by electron microscopy imaging. A clear enhancement of the LSPR has been revealed for a longitudinal excitation and plasmonic coupling has been clearly evidenced in dimers by an induced redshift and broadening of the LSPR compared to monomers. Furthermore, the LSPR has been shown to be highly sensitive to slight modifications of the interparticle distance. All the experimental results are well in agreement with finite element method (FEM) calculations in which the main geometrical parameters characterizing the NAs have been derived from electron microscopy imaging analysis. The main advantage of dimers as compared to monomers lies in the generation of a well-defined and highly enhanced electromagnetic field (the so-called "hot spots") within the interparticle gap that can be exploited in photo-catalysis, magneto-plasmonics or nano-sensing.

18.
Nat Commun ; 3: 952, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22805559

RESUMEN

Symmetric and antisymmetric band-edge modes exist in distributed feedback surface-emitting semiconductor lasers, with the dominant difference being the radiation loss. Devices generally operate on the low-loss antisymmetric modes, although the power extraction efficiency is low. Here we develop graded photonic heterostructures, which localize the symmetric mode in the device centre and confine the antisymmetric modes close to the laser facet. This modal spatial separation is combined with absorbing boundaries to increase the antisymmetric mode loss, and force device operation on the symmetric mode, with elevated radiation efficiency. Application of this concept to terahertz quantum cascade lasers leads to record-high peak-power surface emission (>100 mW) and differential efficiencies (230 mW A(-1)), together with low-divergence, single-lobed emission patterns, and is also applicable to continuous-wave operation. Such flexible tuning of the radiation loss using graded photonic heterostructures, with only a minimal influence on threshold current, is highly desirable for optimizing second-order distributed feedback lasers.


Asunto(s)
Láseres de Semiconductores , Fotones
19.
Opt Lett ; 33(1): 1-3, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18157238

RESUMEN

Heterodyne optical feedback on a solid-state laser is experimentally investigated as an efficient tool to characterize coherently near-field evanescent waves. A well-known topography of evanescent field is obtained via a total internal reflection of the light beam emitted by a class B Yb:Er glass laser. A subwavelength size optical fiber tip is scanned to locally probe the resulting evanescent wave in the near field. After a frequency shifting using a pair of acousto-optic modulators, the collected light is optically reinjected to excite the relaxation oscillations of the laser. The resulting dynamical response simultaneously allows very sensitive measurements of the amplitude and the phase of the evanescent wave. Extension of these preliminary results to near-field optical microscopy is suggested and discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA