Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nano Lett ; 23(19): 9003-9010, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37756214

RESUMEN

Nonlinear optical metasurfaces offer a possibility to perform frequency mixing without the phase-matching constraints of bulk nonlinear crystals and with control of the local nonlinear response at a sub-wavelength scale. Nonlinear inter-subband polaritonic metasurfaces created by combining the semiconductor heterostructures with quantum-engineered inter-subband nonlinear response and electromagnetically engineered metal-clad nanoresonators offer by far the largest second-order nonlinear response of all condensed matter systems reported to date. However, the nonlinear optical response of these metasurfaces is limited by optical intensity saturation in the nanoresonator hot spots that prevented the achievement of power conversion efficiencies over 0.2% in three-wave mixing experiments. In this study, we propose and experimentally demonstrate dielectric inter-subband polaritonic metasurfaces for second-harmonic generation that achieve 0.37% power conversion efficiency. Our structure is created by a new design approach that combines dielectric resonators inducing Mie resonant modes with a lattice resonance to achieve a uniform and high field enhancement throughout the meta-atom volume.

2.
Sensors (Basel) ; 23(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37960706

RESUMEN

In this work, we report on the implementation of a multi-quantum cascade laser (QCL) module as an innovative light source for quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing. The source is composed of three different QCLs coupled with a dichroitic beam combiner module that provides an overlapping collimated beam output for all three QCLs. The 3λ-QCL QEPAS sensor was tested for detection of NO2, SO2, and NH3 in sequence in a laboratory environment. Sensitivities of 19.99 mV/ppm, 19.39 mV/ppm, and 73.99 mV/ppm were reached for NO2, SO2, and NH3 gas detection, respectively, with ultimate detection limits of 9 ppb, 9.3 ppb, and 2.4 ppb for these three gases, respectively, at an integration time of 100 ms. The detection limits were well below the values of typical natural abundance of NO2, SO2, and NH3 in air.

3.
Nano Lett ; 22(3): 896-903, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35043628

RESUMEN

Enhancing the efficiency of second-harmonic generation using all-dielectric metasurfaces to date has mostly focused on electromagnetic engineering of optical modes in the meta-atom. Further advances in nonlinear conversion efficiencies can be gained by engineering the material nonlinearities at the nanoscale, however this cannot be achieved using conventional materials. Semiconductor heterostructures that support resonant nonlinearities using quantum engineered intersubband transitions can provide this new degree of freedom. By simultaneously optimizing the heterostructures and meta-atoms, we experimentally realize an all-dielectric polaritonic metasurface with a maximum second-harmonic generation power conversion factor of 0.5 mW/W2 and power conversion efficiencies of 0.015% at nominal pump intensities of 11 kW/cm2. These conversion efficiencies are higher than the record values reported to date in all-dielectric nonlinear metasurfaces but with 3 orders of magnitude lower pump power. Our results therefore open a new direction for designing efficient nonlinear all-dielectric metasurfaces for new classical and quantum light sources.

4.
Opt Express ; 30(19): 34533-34544, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36242463

RESUMEN

All-dielectric metasurfaces have recently led to a paradigm shift in nonlinear optics as they allow for circumventing the phase matching constraints of bulk crystals and offer high nonlinear conversion efficiencies when normalized by the light-matter interaction volume. Unlike bulk crystals, in all-dielectric metasurfaces nonlinear conversion efficiencies primarily rely on the material nonlinearity, field enhancements, and the modal overlaps, therefore most efforts to date have only focused on utilizing these degrees of freedom. In this work, we demonstrate that for second-harmonic generation in all-dielectric metasurfaces, an additional degree of freedom is the control of the polarity of the nonlinear susceptibility. We demonstrate that semiconductor heterostructures that support resonant nonlinearities based on quantum-engineered intersubband transitions provide this new degree of freedom. We can flip and control the polarity of the nonlinear susceptibility of the dielectric medium along the growth direction and couple it to the Mie-type photonic modes. Here we demonstrate that engineering the χ(2) polarity in the meta-atom enables the control of the second-harmonic radiation pattern and conversion efficiency. Our results therefore open a new direction for engineering and optimizing second-harmonic generation using all-dielectric intersubband nonlinear metasurfaces.

5.
Opt Express ; 30(14): 25410-25417, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237072

RESUMEN

We propose the concept and experimentally verify the operation of terahertz quantum cascade laser sources based on intra-cavity Cherenkov difference-frequency generation on a silicon substrate with the current injection layer configured as a metal wire grid. Such a current injector configuration enables high transmission of TM-polarized terahertz radiation into the silicon substrate while simultaneously providing a low-resistivity metal contact for current injection.

6.
Nano Lett ; 21(1): 367-374, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33347293

RESUMEN

Mie-resonant dielectric metasurfaces are excellent candidates for both fundamental studies related to light-matter interactions and for numerous applications ranging from holography to sensing to nonlinear optics. To date, however, most applications using Mie metasurfaces utilize only weak light-matter interaction. Here, we go beyond the weak coupling regime and demonstrate for the first time strong polaritonic coupling between Mie photonic modes and intersubband (ISB) transitions in semiconductor heterostructures. Furthermore, along with demonstrating ISB polaritons with Rabi splitting as large as 10%, we also demonstrate the ability to tailor the strength of strong coupling by engineering either the semiconductor heterostructure or the photonic mode of the resonators. Unlike previous plasmonic-based works, our new all-dielectric metasurface approach to generate ISB polaritons is free from ohmic losses and has high optical damage thresholds, thereby making it ideal for creating novel and compact mid-infrared light sources based on nonlinear optics.

7.
Nano Lett ; 20(11): 8032-8039, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33112621

RESUMEN

Nonlinear metasurfaces are advancing into a new paradigm of "flat nonlinear optics" owing to the ability to engineer local nonlinear responses in subwavelength-thin films. Recently, attempts have been made to expand the design space of nonlinear metasurfaces through nonlinear chiral responses. However, the development of metasurfaces that display both giant nonlinear circular dichroism and significantly large nonlinear optical response is still an unresolved challenge. Herein, we propose a method that induces giant nonlinear responses with near-unity circular dichroism using polaritonic metasurfaces with optical modes in chiral plasmonic nanocavities coupled with intersubband transitions in semiconductor heterostructures designed to have giant second and third order nonlinear responses. A stark contrast between effective nonlinear susceptibility elements for the two spin states of circularly polarized pump beams was seen in the hybrid structure. Experimentally, near-unity nonlinear circular dichroism and conversion efficiencies beyond 10-4% for second- and third-harmonic generation were achieved simultaneously in a single chip.

8.
Nature ; 511(7507): 65-9, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24990746

RESUMEN

Intersubband transitions in n-doped multi-quantum-well semiconductor heterostructures make it possible to engineer one of the largest known nonlinear optical responses in condensed matter systems--but this nonlinear response is limited to light with electric field polarized normal to the semiconductor layers. In a different context, plasmonic metasurfaces (thin conductor-dielectric composite materials) have been proposed as a way of strongly enhancing light-matter interaction and realizing ultrathin planarized devices with exotic wave properties. Here we propose and experimentally realize metasurfaces with a record-high nonlinear response based on the coupling of electromagnetic modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconductor heterostructures. We show that it is possible to engineer almost any element of the nonlinear susceptibility tensor of these structures, and we experimentally verify this concept by realizing a 400-nm-thick metasurface with nonlinear susceptibility of greater than 5 × 10(4) picometres per volt for second harmonic generation at a wavelength of about 8 micrometres under normal incidence. This susceptibility is many orders of magnitude larger than any second-order nonlinear response in optical metasurfaces measured so far. The proposed structures can act as ultrathin highly nonlinear optical elements that enable efficient frequency mixing with relaxed phase-matching conditions, ideal for realizing broadband frequency up- and down-conversions, phase conjugation and all-optical control and tunability over a surface.

9.
Nano Lett ; 16(6): 3607-15, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27152557

RESUMEN

Strong interaction of graphene with light accounts for one of its most remarkable properties: the ability to absorb 2.3% of the incident light's energy within a single atomic layer. Free carrier injection via field-effect gating can dramatically vary the optical properties of graphene, thereby enabling fast graphene-based modulators of the light intensity. However, the very thinness of graphene makes it difficult to modulate the other fundamental property of the light wave: its optical phase. Here we demonstrate that considerable phase control can be achieved by integrating a single-layer graphene (SLG) with a resonant plasmonic metasurface that contains nanoscale gaps. By concentrating the light intensity inside of the nanogaps, the metasurface dramatically increases the coupling of light to the SLG and enables control of the phase of the reflected mid-infrared light by as much as 55° via field-effect gating. We experimentally demonstrate graphene-based phase modulators that maintain the amplitude of the reflected light essentially constant over most of the phase tuning range. Rapid nonmechanical phase modulation enables a new experimental technique, graphene-based laser interferometry, which we use to demonstrate motion detection with nanoscale precision. We also demonstrate that by the judicious choice of a strongly anisotropic metasurface the graphene-controlled phase shift of light can be rendered polarization-dependent. Using the experimentally measured phases for the two orthogonal polarizations, we demonstrate that the polarization state of the reflected light can be by modulated by carrier injection into the SLG. These results pave the way for novel high-speed graphene-based optical devices and sensors such as polarimeters, ellipsometers, and frequency modulators.

10.
Phys Rev Lett ; 115(20): 207403, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26613471

RESUMEN

We apply the Pancharatnam-Berry phase approach to plasmonic metasurfaces loaded by highly nonlinear multiquantum-well substrates, establishing a platform to control the nonlinear wave front at will based on giant localized nonlinear effects. We apply this approach to design flat nonlinear metasurfaces for efficient second-harmonic radiation, including beam steering, focusing, and polarization manipulation. Our findings open a new direction for nonlinear optics, in which phase matching issues are relaxed, and an unprecedented level of local wave front control is achieved over thin devices with giant nonlinear responses.

11.
Light Sci Appl ; 13(1): 169, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019860

RESUMEN

Nonlinear intersubband polaritonic metasurfaces, which integrate giant nonlinear responses derived from intersubband transitions of multiple quantum wells (MQWs) with plasmonic nanoresonators, not only facilitate efficient frequency conversion at pump intensities on the order of few tens of kW cm-2 but also enable electrical modulation of nonlinear responses at the individual meta-atom level and dynamic beam manipulation. The electrical modulation characteristics of the magnitude and phase of the nonlinear optical response are realized through Stark tuning of the resonant intersubband nonlinearity. In this study, we report, for the first time, experimental implementations of electrical modulation characteristics of mid-infrared third-harmonic generation (THG) using an intersubband polaritonic metasurface based on MQW with electrically tunable third-order nonlinear response. Experimentally, we achieved a 450% modulation depth of the THG signal, 86% suppression of zero-order THG diffraction tuning based on local phase tuning exceeding 180 degrees, and THG beam steering using phase gradients. Our work proposes a new route for electrically tunable flat nonlinear optical elements with versatile functionalities.

12.
ACS Nano ; 18(26): 16545-16555, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38874350

RESUMEN

Optically resonant particles are key building blocks of many nanophotonic devices such as optical antennas and metasurfaces. Because the functionalities of such devices are largely determined by the optical properties of individual resonators, extending the attainable responses from a given particle is highly desirable. Practically, this is usually achieved by introducing an asymmetric dielectric environment. However, commonly used simple substrates have limited influences on the optical properties of the particles atop. Here, we show that the multipolar scattering of silicon microspheres can be effectively modified by placing the particles on a dielectric-covered mirror, which tunes the coupling between the Mie resonances of microspheres and the standing waves and waveguide modes in the dielectric spacer. This tunability allows selective excitation, enhancement, suppression, and even elimination of the multipolar resonances and enables scattering at extended wavelengths, providing transformative opportunities in controlling light-matter interactions for various applications. We further demonstrate with experiments the detection of molecular fingerprints by single-particle mid-infrared spectroscopy and with simulations strong optical repulsive forces that could elevate the particles from a substrate.

13.
Adv Sci (Weinh) ; 10(16): e2207520, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37029461

RESUMEN

Electrically reconfigurable metasurfaces that overcome the static limitations in controlling the fundamental properties of scattered light are opening new avenues for functional flat optics. This work proposes and experimentally demonstrates electrically phase-tunable mid-infrared metasurfaces based on the polaritonic coupling of Stark-tunable intersubband transitions in semiconductor heterostructures and electromagnetic modes in plasmonic nanoresonators. In the applied voltage range of -3 to +3 V, the local phase tuning of the light reflects from the metasurface, which enables the electrical control of the polarization state and wavefront of the reflected wave. Electrical beam polarization control, electrical beam diffraction control, and electrical beam steering are experimentally demonstrated as applications for local phase tunability. The proposed electrically tunable metasurfaces can easily tune the operating wavelength and function at relatively low voltages, which will enable various applications in the mid-infrared region.

14.
Opt Express ; 19(21): 19942-7, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21997003

RESUMEN

We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.


Asunto(s)
Láseres de Semiconductores , Análisis Espectral/métodos , Absorción , Simulación por Computador , Diseño de Equipo , Rayos Láser , Luz , Microscopía de Fuerza Atómica/métodos , Nanotecnología/métodos , Polímeros/química , Teoría Cuántica , Espectrofotometría/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectroscopía de Terahertz/métodos
15.
Opt Lett ; 36(19): 3744-6, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21964083

RESUMEN

We report a new kind of broadly tunable optical bandpass filters based on unusual properties of long-range surface plasmon polaritons. A 0.004 variation in the refractive index of the dielectric medium translates into 210 nm of bandpass tuning at telecom wavelengths. The tuning mechanism reported here may be used to create compact and widely tunable optical systems and other plasmonic components with broadly tunable optical response.

16.
Opt Express ; 17(12): 10335-43, 2009 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-19506687

RESUMEN

We perform ray and wave simulations of passive and active spiral-shaped optical microcavities, comparing our results to experimental data obtained with mid-infrared quantum cascade spiral microlasers. Focusing on the angular emission characteristics, we find that both ray and wave simulations are consistent with the experimental data, showing richly-featured, multidirectional far-field emission patterns in the case of uniform pumping and TM-polarized light. Active cavity simulations using the Schr odinger-Bloch model indicate that selective pumping of the quantum cascade spiral microlasers near the resonator boundary will yield unidirectional laser emission.


Asunto(s)
Rayos Láser , Modelos Teóricos , Transductores , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Rayos Infrarrojos , Miniaturización , Teoría Cuántica , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad
17.
Opt Express ; 17(18): 16216-24, 2009 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-19724621

RESUMEN

Wavelength beam combining was used to co-propagate beams from 28 elements in an array of distributed-feedback quantum cascade lasers (DFB-QCLs). The beam-quality product of the array, defined as the product of near-field spot size and far-field divergence for the entire array, was improved by a factor of 21 by using wavelength beam combining. To demonstrate the applicability of wavelength beam combined DFB-QCL arrays for remote sensing, we obtained the absorption spectrum of isopropanol at a distance of 6 m from the laser array.

18.
Opt Express ; 16(5): 3242-8, 2008 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-18542411

RESUMEN

We report terahertz quantum cascade lasers operating in pulsed mode at an emission frequency of 3 THz and up to a maximum temperature of 178 K. The improvement in the maximum operating temperature is achieved by using a three-quantum-well active region design with resonant-phonon depopulation and by utilizing copper, instead of gold, for the cladding material in the metal-metal waveguides.


Asunto(s)
Cobre/química , Rayos Láser , Microondas , Óptica y Fotónica/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Rayos Infrarrojos , Metales/química , Teoría Cuántica
19.
ACS Nano ; 12(8): 7682-7689, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30052026

RESUMEN

The Si-compatibility of perovskite heterostructures offers the intriguing possibility of producing oxide-based quantum well (QW) optoelectronic devices for use in Si photonics. While the SrTiO3/LaAlO3 (STO/LAO) system has been studied extensively in the hopes of using the interfacial two-dimensional electron gas in Si-integrated electronics, the potential to exploit its giant 2.4 eV conduction band offset in oxide-based QW optoelectronic devices has so far been largely ignored. Here, we demonstrate room-temperature intersubband absorption in STO/LAO QW heterostructures at energies on the order of hundreds of meV, including at energies approaching the critically important telecom wavelength of 1.55 µm. We demonstrate the ability to control the absorption energy by changing the width of the STO well layers by a single unit cell and present theory showing good agreement with experiment. A detailed structural and chemical analysis of the samples via scanning transmission electron microscopy and electron energy loss spectroscopy is presented. This work represents an important proof-of-concept for the use of transition metal oxide QWs in Si-compatible optoelectronic devices.

20.
Opt Express ; 15(8): 4499-514, 2007 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-19532697

RESUMEN

We present novel designs and demonstrate a fabrication platform for electrically driven lasers based on high quality-factor photonic crystal cavities realized in mid-infrared quantum cascade laser material. The structures are based on deep-etched ridges with their sides perforated with photonic crystal lattice, using focused ion beam milling. In this way, a photonic gap is opened for the emitted TM polarized light. Detailed modeling and optimization of the optical properties of the lasers are presented, and their application in optofluidics is investigated. Porous photonic crystal quantum cascade lasers have potential for on-chip, intracavity chemical and biological sensing in fluids using mid infrared spectroscopy. These lasers can also be frequency tuned over a large spectral range by introducing transparent liquid in the photonic crystal holes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA