Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
2.
J Inherit Metab Dis ; 45(3): 481-492, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34918784

RESUMEN

Classic galactosemia (CG) is a rare disorder of autosomal recessive inheritance. It is caused predominantly by point mutations as well as deletions in the gene encoding the enzyme galactose-1-phosphate uridyltransferase (GALT). The majority of the more than 350 mutations identified in the GALT gene cause a significant reduction in GALT enzyme activity resulting in the toxic buildup of galactose metabolites that in turn is associated with cellular stress and injury. Consequently, developing a therapeutic strategy that reverses both the oxidative and ER stress in CG cells may be helpful in combating this disease. Recombinant adeno-associated virus (AAV)-mediated gene therapy to restore GALT activity offers the potential to address the unmet medical needs of galactosemia patients. Here, utilizing fibroblasts derived from CG patients we demonstrated that AAV-mediated augmentation of GALT protein and activity resulted in the prevention of ER and oxidative stress. We also demonstrate that these CG patient fibroblasts exhibit reduced CD109 and TGFßRII protein levels and that these effectors of cellular homeostasis could be restored following AAV-mediated expression of GALT. Finally, we show initial in vivo proof-of-concept restoration of galactose metabolism in a GALT knockout mouse model following treatment with AAV-GALT.


Asunto(s)
Galactosemias , UTP-Hexosa-1-Fosfato Uridililtransferasa , Animales , Fibroblastos/metabolismo , Galactosa/metabolismo , Galactosemias/genética , Galactosemias/terapia , Humanos , Ratones , Ratones Noqueados , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo
3.
Mol Ther ; 29(9): 2806-2820, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34298128

RESUMEN

Non-human primates (NHPs) are a preferred animal model for optimizing adeno-associated virus (AAV)-mediated CNS gene delivery protocols before clinical trials. In spite of its inherent appeal, it is challenging to compare different serotypes, delivery routes, and disease indications in a well-powered, comprehensive, multigroup NHP experiment. Here, a multiplex barcode recombinant AAV (rAAV) vector-tracing strategy has been applied to a systemic analysis of 29 distinct, wild-type (WT), AAV natural isolates and engineered capsids in the CNS of eight macaques. The report describes distribution of each capsid in 15 areas of the macaques' CNS after intraparenchymal (putamen) injection, or cerebrospinal fluid (CSF)-mediated administration routes (intracisternal, intrathecal, or intracerebroventricular). To trace the vector biodistribution (viral DNA) and targeted tissues transduction (viral mRNA) of each capsid in each of the analyzed CNS areas, quantitative next-generation sequencing analysis, assisted by the digital-droplet PCR technology, was used. The report describes the most efficient AAV capsid variants targeting specific CNS areas after each route of administration using the direct side-by-side comparison of WT AAV isolates and a new generation of rationally designed capsids. The newly developed bioinformatics and visualization algorithms, applicable to the comparative analysis of several mammalian brain models, have been developed and made available in the public domain.


Asunto(s)
Proteínas de la Cápside/genética , Sistema Nervioso Central/química , Dependovirus/fisiología , Vectores Genéticos/administración & dosificación , Algoritmos , Animales , Sistema Nervioso Central/virología , ADN Viral/genética , Bases de Datos Genéticas , Dependovirus/genética , Vías de Administración de Medicamentos , Secuenciación de Nucleótidos de Alto Rendimiento , Primates , ARN Mensajero/genética , ARN Viral/genética , Distribución Tisular , Transducción Genética
4.
Handb Exp Pharmacol ; 273: 83-95, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34463850

RESUMEN

Efficient therapeutic transport across the neurovasculature remains a challenge for developing medicine to treat central nervous system (CNS) disorders (Bell and Ehlers, Neuron 81:1-3, 2014). This chapter is meant to provide some insight and key considerations for developing and evaluating various technologies and approaches to CNS drug delivery. First, a brief review of various biological barriers, including the immune system, cellular and protein components of the blood-brain barrier (BBB), and clearance mechanisms in peripheral organs is provided. Next, a few examples and learnings from existing BBB-crossing modalities will be reviewed. Insight from "BBBomic" databases and thoughts on basic requirements for successful in vivo validation studies are discussed. Finally, an additional engineering barrier, namely manufacturing and product scalability, is highlighted as it relates to clinical translation and feasibility for developing BBB-crossing delivery technologies. A goal of this chapter is to provide an overview of the many barriers to the successful delivery of medicines into the brain. An emphasis will be placed on biotherapeutic and gene therapy applications for the treatment of neurological and neurodegenerative disorders.


Asunto(s)
Barrera Hematoencefálica , Sistemas de Liberación de Medicamentos , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Humanos , Preparaciones Farmacéuticas/metabolismo , Tecnología
5.
J Neuroinflammation ; 15(1): 142, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29759062

RESUMEN

BACKGROUND: Acute neurological insults caused by infection, systemic inflammation, ischemia, or traumatic injury are often associated with breakdown of the blood-brain barrier (BBB) followed by infiltration of peripheral immune cells, cytotoxic proteins, and water. BBB breakdown and extravasation of these peripheral components into the brain parenchyma result in inflammation, oxidative stress, edema, excitotoxicity, and neurodegeneration. These downstream consequences of BBB dysfunction can drive pathophysiological processes and play a substantial role in the morbidity and mortality of acute and chronic neurological insults, and contribute to long-term sequelae. Preserving or rescuing BBB integrity and homeostasis therefore represents a translational research area of high therapeutic potential. METHODS: Induction of general and localized BBB disruption in mice was carried out using systemic administration of LPS and focal photothrombotic ischemic insult, respectively, in the presence and absence of the monoacylglycerol lipase (MAGL) inhibitor, CPD-4645. The effects of CPD-4645 treatment were assessed by gene expression analysis performed on neurovascular-enriched brain fractions, cytokine and inflammatory mediator measurement, and functional assessment of BBB permeability. The mechanism of action of CPD-4645 was studied pharmacologically using inverse agonists/antagonists of the cannabinoid receptors CB1 and CB2. RESULTS: Here, we demonstrate that the neurovasculature exhibits a unique transcriptional signature following inflammatory insults, and pharmacological inhibition of MAGL using a newly characterized inhibitor rescues the transcriptional profile of brain vasculature and restores its functional homeostasis. This pronounced effect of MAGL inhibition on blood-brain barrier permeability is evident following both systemic inflammatory and localized ischemic insults. Mechanistically, the protective effects of the MAGL inhibitor are partially mediated by cannabinoid receptor signaling in the ischemic brain insult. CONCLUSIONS: Our results support considering MAGL inhibitors as potential therapeutics for BBB dysfunction and cerebral edema associated with inflammatory brain insults.


Asunto(s)
Ácidos Araquidónicos/antagonistas & inhibidores , Ácidos Araquidónicos/metabolismo , Barrera Hematoencefálica/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Permeabilidad Capilar/fisiología , Endocannabinoides/antagonistas & inhibidores , Endocannabinoides/metabolismo , Glicéridos/antagonistas & inhibidores , Glicéridos/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Lesiones Encefálicas/inducido químicamente , Permeabilidad Capilar/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Hidrólisis/efectos de los fármacos , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/metabolismo
6.
Nature ; 485(7399): 512-6, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22622580

RESUMEN

Human apolipoprotein E has three isoforms: APOE2, APOE3 and APOE4. APOE4 is a major genetic risk factor for Alzheimer's disease and is associated with Down's syndrome dementia and poor neurological outcome after traumatic brain injury and haemorrhage. Neurovascular dysfunction is present in normal APOE4 carriers and individuals with APOE4-associated disorders. In mice, lack of Apoe leads to blood-brain barrier (BBB) breakdown, whereas APOE4 increases BBB susceptibility to injury. How APOE genotype affects brain microcirculation remains elusive. Using different APOE transgenic mice, including mice with ablation and/or inhibition of cyclophilin A (CypA), here we show that expression of APOE4 and lack of murine Apoe, but not APOE2 and APOE3, leads to BBB breakdown by activating a proinflammatory CypA-nuclear factor-κB-matrix-metalloproteinase-9 pathway in pericytes. This, in turn, leads to neuronal uptake of multiple blood-derived neurotoxic proteins, and microvascular and cerebral blood flow reductions. We show that the vascular defects in Apoe-deficient and APOE4-expressing mice precede neuronal dysfunction and can initiate neurodegenerative changes. Astrocyte-secreted APOE3, but not APOE4, suppressed the CypA-nuclear factor-κB-matrix-metalloproteinase-9 pathway in pericytes through a lipoprotein receptor. Our data suggest that CypA is a key target for treating APOE4-mediated neurovascular injury and the resulting neuronal dysfunction and degeneration.


Asunto(s)
Apolipoproteínas E/metabolismo , Barrera Hematoencefálica/fisiología , Circulación Cerebrovascular/fisiología , Ciclofilina A/metabolismo , Animales , Apolipoproteína E2/deficiencia , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Apolipoproteína E3/deficiencia , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/deficiencia , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/fisiopatología , Ciclofilina A/antagonistas & inhibidores , Ciclofilina A/deficiencia , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Transgénicos , Microcirculación , FN-kappa B/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Pericitos/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(36): 14771-6, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23959870

RESUMEN

Whereas amyloid-ß (Aß) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aß accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aß precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aß accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aß transporter, and higher brain Aß levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aß synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP(sw/0) mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aß production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu's effect on brain Aß homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aß levels in the aging brain.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Encéfalo/efectos de los fármacos , Cobre/farmacología , Homeostasis/efectos de los fármacos , Factores de Edad , Péptidos beta-Amiloides/farmacocinética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Western Blotting , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Capilares/efectos de los fármacos , Capilares/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cobre/metabolismo , Relación Dosis-Respuesta a Droga , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Radioisótopos de Yodo/farmacocinética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Tasa de Depuración Metabólica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Factores de Tiempo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 34(6): 1249-59, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24578380

RESUMEN

OBJECTIVE: Long noncoding RNAs (lncRNAs) represent a rapidly growing class of RNA genes with functions related primarily to transcriptional and post-transcriptional control of gene expression. There is a paucity of information about lncRNA expression and function in human vascular cells. Thus, we set out to identify novel lncRNA genes in human vascular smooth muscle cells and to gain insight into their role in the control of smooth muscle cell phenotypes. APPROACH AND RESULTS: RNA sequencing (RNA-seq) of human coronary artery smooth muscle cells revealed 31 unannotated lncRNAs, including a vascular cell-enriched lncRNA (Smooth muscle and Endothelial cell-enriched migration/differentiation-associated long NonCoding RNA [SENCR]). Strand-specific reverse transcription polymerase chain reaction (PCR) and rapid amplification of cDNA ends indicate that SENCR is transcribed antisense from the 5' end of the FLI1 gene and exists as 2 splice variants. RNA fluorescence in situ hybridization and biochemical fractionation studies demonstrate SENCR is a cytoplasmic lncRNA. Consistent with this observation, knockdown studies reveal little to no cis-acting effect of SENCR on FLI1 or neighboring gene expression. RNA-seq experiments in smooth muscle cells after SENCR knockdown disclose decreased expression of Myocardin and numerous smooth muscle contractile genes, whereas several promigratory genes are increased. Reverse transcription PCR and Western blotting experiments validate several differentially expressed genes after SENCR knockdown. Loss-of-function studies in scratch wound and Boyden chamber assays support SENCR as an inhibitor of smooth muscle cell migration. CONCLUSIONS: SENCR is a new vascular cell-enriched, cytoplasmic lncRNA that seems to stabilize the smooth muscle cell contractile phenotype.


Asunto(s)
Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología , ARN Largo no Codificante/fisiología , Células Cultivadas , Humanos , Músculo Liso Vascular/citología , Proteína Proto-Oncogénica c-fli-1/genética , ARN Mensajero/análisis , Vasoconstricción
9.
J Neurosci ; 33(14): 6181-90, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23554499

RESUMEN

Activated protein C (APC) is a protease with anticoagulant and cell-signaling activities. In the CNS, APC and its analogs with reduced anticoagulant activity but preserved cell signaling activities, such as 3K3A-APC, exert neuroprotective, vasculoprotective, and anti-inflammatory effects. Murine APC promotes subependymal neurogenesis in rodents in vivo after ischemic and traumatic brain injury. Whether human APC can influence neuronal production from resident progenitor cells in humans is unknown. Here we show that 3K3A-APC, but not S360A-APC (an enzymatically inactive analog of APC), stimulates neuronal mitogenesis and differentiation from fetal human neural stem and progenitor cells (NPCs). The effects of 3K3A-APC on proliferation and differentiation were comparable to those obtained with fibroblast growth factor and brain-derived growth factor, respectively. Its promoting effect on neuronal differentiation was accompanied by inhibition of astroglial differentiation. In addition, 3K3A-APC exerted modest anti-apoptotic effects during neuronal production. These effects appeared to be mediated through specific protease activated receptors (PARs) and sphingosine-1-phosphate receptors (S1PRs), in that siRNA-mediated inhibition of PARs 1-4 and S1PRs 1-5 revealed that PAR1, PAR3, and S1PR1 are required for the neurogenic effects of 3K3A-APC. 3K3A-APC activated Akt, a downstream target of S1PR1, which was inhibited by S1PR1, PAR1, and PAR3 silencing. Adenoviral transduction of NPCs with a kinase-defective Akt mutant abolished the effects of 3K3A-APC on NPCs, confirming a key role of Akt activation in 3K3A-APC-mediated neurogenesis. Therefore, APC and its pharmacological analogs, by influencing PAR and S1PR signals in resident neural progenitor cells, may be potent modulators of both development and repair in the human CNS.


Asunto(s)
Factores de Coagulación Sanguínea/agonistas , Células-Madre Neurales/fisiología , Neurogénesis/efectos de los fármacos , Oligopéptidos/farmacología , Receptores de Superficie Celular/agonistas , Transducción de Señal/efectos de los fármacos , Análisis de Varianza , Animales , Apoptosis/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/farmacología , Bromodesoxiuridina , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Ventrículos Cerebrales/citología , Dactinomicina/análogos & derivados , Dactinomicina/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Feto , Citometría de Flujo , Humanos , Proteínas de Filamentos Intermediarios/metabolismo , Antígeno Ki-67/metabolismo , Lisofosfolípidos/metabolismo , Masculino , Mutación/fisiología , Proteínas del Tejido Nervioso/metabolismo , Nestina , Células-Madre Neurales/efectos de los fármacos , Proteína Oncogénica v-akt/metabolismo , Interferencia de ARN/fisiología , ARN Interferente Pequeño/farmacología , Receptores de Lisoesfingolípidos/metabolismo , Receptores Proteinasa-Activados/metabolismo , Serina/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Factores de Tiempo
10.
J Biol Chem ; 288(21): 15154-66, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23580652

RESUMEN

Soluble low density lipoprotein receptor-related protein-1 (sLRP1) binds ~70% of amyloid ß-peptide (Aß) in human plasma. In Alzheimer disease (AD) and individuals with mild cognitive impairment converting to AD, plasma sLRP1 levels are reduced and sLRP1 is oxidized, which results in diminished Aß peripheral binding and higher levels of free Aß in plasma. Experimental studies have shown that free circulating Aß re-enters the brain and that sLRP1 and/or its recombinant wild type cluster IV (WT-LRPIV) prevent Aß from entering the brain. Treatment of Alzheimer APPsw(+/0) mice with WT-LRPIV has been shown to reduce brain Aß pathology. In addition to Aß, LRPIV binds multiple ligands. To enhance LRPIV binding for Aß relative to other LRP1 ligands, we generated a library of LRPIV-derived fragments and full-length LRPIV variants with glycine replacing aspartic acid residues 3394, 3556, and 3674 in the calcium binding sites. Compared with WT-LRPIV, a lead LRPIV-D3674G mutant had 1.6- and 2.7-fold higher binding affinity for Aß40 and Aß42 in vitro, respectively, and a lower binding affinity for other LRP1 ligands (e.g. apolipoprotein E2, E3, and E4 (1.3-1.8-fold), tissue plasminogen activator (2.7-fold), matrix metalloproteinase-9 (4.1-fold), and Factor Xa (3.8-fold)). LRPIV-D3674G cleared mouse endogenous brain Aß40 and Aß42 25-27% better than WT-LRPIV. A 3-month subcutaneous treatment of APPsw(+/0) mice with LRPIV-D3674G (40 µg/kg/day) reduced Aß40 and Αß42 levels in the hippocampus, cortex, and cerebrospinal fluid by 60-80% and improved cerebral blood flow responses and hippocampal function at 9 months of age. Thus, LRPIV-D3674G is an efficient new Aß clearance therapy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Fragmentos de Péptidos/metabolismo , Receptores de LDL/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Sustitución de Aminoácidos , Péptidos beta-Amiloides/genética , Animales , Células CHO , Corteza Cerebral/patología , Circulación Cerebrovascular/genética , Cricetinae , Cricetulus , Hipocampo/patología , Humanos , Ligandos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones , Ratones Mutantes , Mutación Missense , Fragmentos de Péptidos/genética , Unión Proteica/genética , Receptores de LDL/genética , Proteínas Supresoras de Tumor/genética
11.
Nat Med ; 13(9): 1029-31, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17694066

RESUMEN

Low-density lipoprotein receptor-related protein-1 (LRP) on brain capillaries clears amyloid beta-peptide (Abeta) from brain. Here, we show that soluble circulating LRP (sLRP) provides key endogenous peripheral 'sink' activity for Abeta in humans. Recombinant LRP cluster IV (LRP-IV) bound Abeta in plasma in mice and Alzheimer's disease-affected humans with compromised sLRP-mediated Abeta binding, and reduced Abeta-related pathology and dysfunction in a mouse model of Alzheimer disease, suggesting that LRP-IV can effectively replace native sLRP and clear Abeta.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Capilares/fisiología , Circulación Cerebrovascular/fisiología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/fisiología , Enfermedad de Alzheimer/fisiopatología , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Heterocigoto , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/sangre , Ratones
12.
Eur J Cell Biol ; 103(2): 151406, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547677

RESUMEN

Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood-brain barrier (BBB). Most molecules require either carrier- or receptor-mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium-enriched receptors allowing the transport of large molecules into the brain is scarce. Therefore, to identify novel BBB targets, we combined transcriptomic analysis of human and murine brain endothelium and performed a complex screening of BBB-enriched genes according to established selection criteria. As a result, we propose the high-affinity cationic amino acid transporter 1 (SLC7A1) as a novel candidate for transport of large molecules across the BBB. Using RNA sequencing and in situ hybridization assays, we demonstrated elevated SLC7A1 gene expression in both human and mouse brain endothelium. Moreover, we confirmed SLC7A1 protein expression in brain vasculature of both young and aged mice. To assess the potential of SLC7A1 as a transporter for larger proteins, we performed internalization and transcytosis studies using a radiolabelled or fluorophore-labelled anti-SLC7A1 antibody. Our results showed that SLC7A1 internalised a SLC7A1-specific antibody in human colorectal carcinoma (HCT116) cells. Moreover, transcytosis studies in both immortalised human brain endothelial (hCMEC/D3) cells and primary mouse brain endothelial cells clearly demonstrated that SLC7A1 effectively transported the SLC7A1-specific antibody from luminal to abluminal side. Therefore, here in this study, we present for the first time the SLC7A1 as a novel candidate for transport of larger molecules across the BBB.


Asunto(s)
Barrera Hematoencefálica , Transportador de Aminoácidos Catiónicos 1 , Barrera Hematoencefálica/metabolismo , Animales , Humanos , Ratones , Transportador de Aminoácidos Catiónicos 1/metabolismo , Transportador de Aminoácidos Catiónicos 1/genética , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL
13.
Blood ; 115(23): 4963-72, 2010 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-20348395

RESUMEN

The anticoagulant factor protein S (PS) has direct cellular activities. Lack of PS in mice causes lethal coagulopathy, ischemic/thrombotic injuries, vascular dysgenesis, and blood-brain barrier (BBB) disruption with intracerebral hemorrhages. Thus, we hypothesized that PS maintains and/or enhances the BBB integrity. Using a BBB model with human brain endothelial cells, we show PS inhibits time- and dose-dependently (half maximal effective concentration [EC(50)] = 27 +/- 3 nM) oxygen/glucose deprivation-induced BBB breakdown, as demonstrated by measurements of the transmonolayer electrical resistance, permeability of endothelial monolayers to dextran (40 kDa), and rearrangement of F-actin toward the cortical cytoskeletal ring. Using Tyro-3, Axl, and Mer (TAM) receptor, tyrosine kinase silencing through RNA interference, specific N-terminus-blocking antibodies, Tyro3 phosphorylation, and Tyro3-, Axl- and Mer-deficient mouse brain endothelial cells, we show that Tyro3 mediates PS vasculoprotection. After Tyro3 ligation, PS activated sphingosine 1-phosphate receptor (S1P(1)), resulting in Rac1-dependent BBB protection. Using 2-photon in vivo imaging, we show that PS blocks postischemic BBB disruption in Tyro3(+/+), Axl(-/-), and Mer(-/-) mice, but not in Tyro3(-/-) mice or Tyro3(+/+) mice receiving low-dose W146, a S1P(1)-specific antagonist. Our findings indicate that PS protects the BBB integrity via Tyro3 and S1P(1), suggesting potentially novel treatments for neurovascular dysfunction resulting from hypoxic/ischemic BBB damage.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Proteína S/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Animales , Isquemia Encefálica/genética , Humanos , Ratones , Ratones Mutantes , Modelos Biológicos , Neuropéptidos/genética , Neuropéptidos/metabolismo , Fosforilación/genética , Proteína S/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Receptores de Lisoesfingolípidos/genética , Receptores de Esfingosina-1-Fosfato , Adulto Joven , Tirosina Quinasa c-Mer , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Tirosina Quinasa del Receptor Axl
14.
Nat Med ; 11(9): 959-65, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16116430

RESUMEN

Neurovascular dysfunction substantially contributes to Alzheimer disease. Here, we show that transcriptional profiling of human brain endothelial cells (BECs) defines a subset of genes whose expression is age-independent but is considerably altered in Alzheimer disease, including the homeobox gene MEOX2 (also known as GAX), a regulator of vascular differentiation, whose expression is low in Alzheimer disease. By using viral-mediated MEOX2 gene silencing and transfer, we show that restoring expression of the protein it encodes, GAX, in BECs from individuals with Alzheimer disease stimulates angiogenesis, transcriptionally suppresses AFX1 forkhead transcription factor-mediated apoptosis and increases the levels of a major amyloid-beta peptide (Abeta) clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP), at the blood-brain barrier. In mice, deletion of Meox2 (also known as Gax) results in reductions in brain capillary density and resting cerebral blood flow, loss of the angiogenic response to hypoxia in the brain and an impaired Abeta efflux from brain caused by reduced LRP levels. The link of MEOX2 to neurovascular dysfunction in Alzheimer disease provides new mechanistic and therapeutic insights into this illness.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Encéfalo/irrigación sanguínea , Células Endoteliales/metabolismo , Regulación de la Expresión Génica/fisiología , Genes Homeobox , Enfermedad de Alzheimer/metabolismo , Animales , Apoptosis , Células Cultivadas , Lóbulo Frontal/irrigación sanguínea , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Neovascularización Fisiológica/genética
15.
J Neurosci ; 30(46): 15521-34, 2010 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-21084607

RESUMEN

The anticoagulant factor protein S (PS) protects neurons from hypoxic/ischemic injury. However, molecular mechanisms mediating PS protection in injured neurons remain unknown. Here, we show mouse recombinant PS protects dose-dependently mouse cortical neurons from excitotoxic NMDA-mediated neuritic bead formation and apoptosis by activating the phosphatidylinositol 3-kinase (PI3K)-Akt pathway (EC(50) = 26 ± 4 nm). PS stimulated phosphorylation of Bad and Mdm2, two downstream targets of Akt, which in neurons subjected to pathological overstimulation of NMDA receptors (NMDARs) increased the antiapoptotic Bcl-2 and Bcl-X(L) levels and reduced the proapoptotic p53 and Bax levels. Adenoviral transduction with a kinase-deficient Akt mutant (Ad.Akt(K179A)) resulted in loss of PS-mediated neuronal protection, Akt activation, and Bad and Mdm2 phosphorylation. Using the TAM receptors tyrosine kinases Tyro3-, Axl-, and Mer-deficient neurons, we showed that PS protected neurons lacking Axl and Mer, but not Tyro3, suggesting a requirement of Tyro3 for PS-mediated protection. Consistent with these results, PS dose-dependently phosphorylated Tyro3 on neurons (EC(50) = 25 ± 3 nm). In an in vivo model of NMDA-induced excitotoxic lesions in the striatum, PS dose-dependently reduced the lesion volume in control mice (EC(50) = 22 ± 2 nm) and protected Axl(-/-) and Mer(-/-) transgenic mice, but not Tyro3(-/-) transgenic mice. Using different structural PS analogs, we demonstrated that the C terminus sex hormone-binding globulin-like (SHBG) domain of PS is critical for neuronal protection in vitro and in vivo. Thus, our data show that PS protects neurons by activating the Tyro3-PI3K-Akt pathway via its SHGB domain, suggesting potentially a novel neuroprotective approach for acute brain injury and chronic neurodegenerative disorders associated with excessive activation of NMDARs.


Asunto(s)
Neuronas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteína S/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Globulina de Unión a Hormona Sexual/metabolismo , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/toxicidad , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-akt/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
16.
J Biol Methods ; 8(2): e149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34258307

RESUMEN

Galactosemias are a family of autosomal recessive genetic disorders resulting from impaired enzymes of the Leloir pathway of galactose metabolism including galactokinase, galactose uridyltransferase, and UDP-galactose 4-epimerase that are critical for conversion of galactose into glucose-6-phosphate. To better understand pathophysiological mechanisms involved in galactosemia and develop novel therapies to address the unmet need in patients, it is important to develop reliable assays to measure the activity of the Leloir pathway enzymes. Here we describe in-depth methods for indirectly measuring galacose-1-phosphate uridyltransferase activity in cell culture and animal tissues.

17.
Nat Rev Drug Discov ; 20(5): 362-383, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33649582

RESUMEN

Achieving sufficient delivery across the blood-brain barrier is a key challenge in the development of drugs to treat central nervous system (CNS) disorders. This is particularly the case for biopharmaceuticals such as monoclonal antibodies and enzyme replacement therapies, which are largely excluded from the brain following systemic administration. In recent years, increasing research efforts by pharmaceutical and biotechnology companies, academic institutions and public-private consortia have resulted in the evaluation of various technologies developed to deliver therapeutics to the CNS, some of which have entered clinical testing. Here we review recent developments and challenges related to selected blood-brain barrier-crossing strategies - with a focus on non-invasive approaches such as receptor-mediated transcytosis and the use of neurotropic viruses, nanoparticles and exosomes - and analyse their potential in the treatment of CNS disorders.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Fármacos del Sistema Nervioso Central/farmacocinética , Fármacos del Sistema Nervioso Central/uso terapéutico , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Animales , Humanos
18.
Transl Psychiatry ; 11(1): 136, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608496

RESUMEN

Schizophrenia is a complex and heterogenous disease that presents with abnormalities in glutamate signaling and altered immune and inflammatory signals. Genome-wide association studies have indicated specific genes and pathways that may contribute to schizophrenia. We assessed the impact of the functional missense variant SLC39A8 (ZIP8)-A391T (ZIP8A391T) on zinc transport, glutamate signaling, and the neuroinflammatory response. The ZIP8A391T mutation resulted in reduced zinc transport into the cell, suggesting a loss in the tight control of zinc in the synaptic cleft. Electrophysiological recordings from perturbed neurons revealed a significant reduction in NMDA- and AMPA-mediated spontaneous EPSCs (sEPSCs) and a reduction in GluN2A and GluA1/2/3 receptor surface expression. All phenotypes were rescued by re-expression of wild-type ZIP8 (ZIP8WT) or application of the membrane-impermeable zinc chelator ZX1. ZIP8 reduction also resulted in decreased BBB integrity, increased IL-6/IL-1ß protein expression, and increased NFκB following TNFα stimulation, indicating that ZIP8 loss-of-function may exacerbate immune and inflammatory signals. Together, our findings demonstrate that the A391T missense mutation results in alterations in glutamate and immune function and provide novel therapeutic targets relevant to schizophrenia.


Asunto(s)
Proteínas de Transporte de Catión , Esquizofrenia , Alelos , Proteínas de Transporte de Catión/genética , Estudio de Asociación del Genoma Completo , Ácido Glutámico , Humanos , Inmunidad Innata , Receptores de Glutamato , Esquizofrenia/genética
19.
J Neurochem ; 115(5): 1077-89, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20854368

RESUMEN

Low-density lipoprotein receptor-related protein-1 (LRP1), a member of the low-density lipoprotein receptor family, has major roles in the cellular transport of cholesterol, endocytosis of 40 structurally diverse ligands, transcytosis of ligands across the blood-brain barrier, and transmembrane and nuclear signaling. Recent evidence indicates that LRP1 regulates brain and systemic clearance of Alzheimer's disease (AD) amyloid ß-peptide (Aß). According to the two-hit vascular hypothesis for AD, vascular damage precedes cerebrovascular and brain Aß accumulation (hit 1) which then further amplifies neurovascular dysfunction (hit 2) preceding neurodegeneration. In this study, we discuss the roles of LRP1 during the hit 1 and hit 2 stage of AD pathogenesis and describe a three-level serial LRP1-dependent homeostatic control of Aß clearance including (i) cell-surface LRP1 at the blood-brain barrier and cerebrovascular cells mediating brain-to-blood Aß clearance (ii) circulating LRP1 providing a key endogenous peripheral 'sink' activity for plasma Aß which prevents free Aß access to the brain, and (iii) LRP1 in the liver mediating systemic Aß clearance. Pitfalls in experimental Aß brain clearance measurements with the concurrent use of peptides/proteins such as receptor-associated protein and aprotinin are also discussed. We suggest that LRP1 has a critical role in AD pathogenesis and is an important therapeutic target in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Homeostasis/fisiología , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA