Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cell ; 169(5): 780-791, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525751

RESUMEN

In metazoan cell nuclei, hundreds of large chromatin domains are in close contact with the nuclear lamina. Such lamina-associated domains (LADs) are thought to help organize chromosomes inside the nucleus and have been associated with gene repression. Here, we discuss the properties of LADs, the molecular mechanisms that determine their association with the nuclear lamina, their dynamic links with other nuclear compartments, and their proposed roles in gene regulation.


Asunto(s)
Núcleo Celular/química , Cromatina/química , Animales , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Heterocromatina , Humanos , Laminas/metabolismo , Lámina Nuclear/química , Poro Nuclear/metabolismo
2.
Mol Cell ; 83(15): 2624-2640, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37419111

RESUMEN

The four-dimensional nucleome (4DN) consortium studies the architecture of the genome and the nucleus in space and time. We summarize progress by the consortium and highlight the development of technologies for (1) mapping genome folding and identifying roles of nuclear components and bodies, proteins, and RNA, (2) characterizing nuclear organization with time or single-cell resolution, and (3) imaging of nuclear organization. With these tools, the consortium has provided over 2,000 public datasets. Integrative computational models based on these data are starting to reveal connections between genome structure and function. We then present a forward-looking perspective and outline current aims to (1) delineate dynamics of nuclear architecture at different timescales, from minutes to weeks as cells differentiate, in populations and in single cells, (2) characterize cis-determinants and trans-modulators of genome organization, (3) test functional consequences of changes in cis- and trans-regulators, and (4) develop predictive models of genome structure and function.


Asunto(s)
Núcleo Celular , Genoma , Genoma/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo
3.
Cell ; 145(3): 447-58, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21529716

RESUMEN

Random X inactivation represents a paradigm for monoallelic gene regulation during early ES cell differentiation. In mice, the choice of X chromosome to inactivate in XX cells is ensured by monoallelic regulation of Xist RNA via its antisense transcription unit Tsix/Xite. Homologous pairing events have been proposed to underlie asymmetric Tsix expression, but direct evidence has been lacking owing to their dynamic and transient nature. Here we investigate the live-cell dynamics and outcome of Tsix pairing in differentiating mouse ES cells. We find an overall increase in genome dynamics including the Xics during early differentiation. During pairing, however, Xic loci show markedly reduced movements. Upon separation, Tsix expression becomes transiently monoallelic, providing a window of opportunity for monoallelic Xist upregulation. Our findings reveal the spatiotemporal choreography of the X chromosomes during early differentiation and indicate a direct role for pairing in facilitating symmetry-breaking and monoallelic regulation of Xist during random X inactivation.


Asunto(s)
Diferenciación Celular , Emparejamiento Cromosómico , Células Madre Embrionarias/metabolismo , Inactivación del Cromosoma X , Cromosoma X/metabolismo , Animales , Células Madre Embrionarias/citología , Femenino , Ratones , ARN Largo no Codificante , ARN no Traducido/genética , Imagen de Lapso de Tiempo
4.
Genome Res ; 31(2): 251-264, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33355299

RESUMEN

TSA-seq mapping suggests that gene distance to nuclear speckles is more deterministic and predictive of gene expression levels than gene radial positioning. Gene expression correlates inversely with distance to nuclear speckles, with chromosome regions of unusually high expression located at the apex of chromosome loops protruding from the nuclear periphery into the interior. Genomic distances to the nearest lamina-associated domain are larger for loop apexes mapping closest to nuclear speckles, suggesting the possibility of conservation of speckle-associated regions. To facilitate comparison of genome organization by TSA-seq, we reduced required cell numbers 10- to 20-fold for TSA-seq by deliberately saturating protein-labeling while preserving distance mapping by the still unsaturated DNA-labeling. Only ∼10% of the genome shows statistically significant shifts in relative nuclear speckle distances in pair-wise comparisons between human cell lines (H1, HFF, HCT116, K562); however, these moderate shifts in nuclear speckle distances tightly correlate with changes in cell type-specific gene expression. Similarly, half of heat shock-induced gene loci already preposition very close to nuclear speckles, with the remaining positioned near or at intermediate distance (HSPH1) to nuclear speckles but shifting even closer with transcriptional induction. Speckle association together with chromatin decondensation correlates with expression amplification upon HSPH1 activation. Our results demonstrate a largely "hardwired" genome organization with specific genes moving small mean distances relative to speckles during cell differentiation or a physiological transition, suggesting an important role of nuclear speckles in gene expression regulation.

5.
Nature ; 549(7671): 219-226, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28905911

RESUMEN

The 4D Nucleome Network aims to develop and apply approaches to map the structure and dynamics of the human and mouse genomes in space and time with the goal of gaining deeper mechanistic insights into how the nucleus is organized and functions. The project will develop and benchmark experimental and computational approaches for measuring genome conformation and nuclear organization, and investigate how these contribute to gene regulation and other genome functions. Validated experimental technologies will be combined with biophysical approaches to generate quantitative models of spatial genome organization in different biological states, both in cell populations and in single cells.


Asunto(s)
Núcleo Celular/genética , Núcleo Celular/fisiología , Genoma , Modelos Moleculares , Imagen Molecular/métodos , Análisis Espacio-Temporal , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Cromosomas/química , Cromosomas/genética , Cromosomas/metabolismo , Genómica/métodos , Genómica/organización & administración , Objetivos , Humanos , Difusión de la Información , Ratones , Modelos Biológicos , Reproducibilidad de los Resultados , Análisis de la Célula Individual
6.
Nature ; 552(7684): 278, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29168505

RESUMEN

This corrects the article DOI: 10.1038/nature23884.

7.
J Cell Sci ; 132(8)2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30858197

RESUMEN

Although the formation of RNA-protein bodies has been studied intensively, their mobility and how their number and size are regulated are still poorly understood. Here, we show significantly increased mobility of nuclear speckles after transcriptional inhibition, including long-range directed motion of one speckle towards another speckle, terminated by speckle fusion, over distances up to 4 µm and with velocities between 0.2 µm/min and 1.5 µm/min. Frequently, three or even four speckles follow very similar paths, with new speckles appearing along the path followed by a preceding speckle. Speckle movements and fusion events contribute to fewer, but larger, speckles after transcriptional inhibition. These speckle movements are not actin dependent, but occur within chromatin-depleted channels enriched with small granules containing the speckle marker protein SON. Similar long-range speckle movements and fusion events were observed after heat shock or heavy metal stress, and during late G2 and early prophase. Our observations suggest a mechanism for long-range, directional nuclear speckle movements, contributing to overall regulation of nuclear speckle number and size as well as overall nuclear organization. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Respuesta al Choque Térmico , Cuerpos de Inclusión Intranucleares/metabolismo , Activación Transcripcional , Transgenes , Actinas/química , Actinas/metabolismo , Animales , Células CHO , Cromatina/genética , Cromatina/metabolismo , Cricetulus , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo
9.
Nucleic Acids Res ; 46(17): e100, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-29912475

RESUMEN

Nuclear organization has an important role in determining genome function; however, it is not clear how spatiotemporal organization of the genome relates to functionality. To elucidate this relationship, a method for tracking any locus of interest is desirable. Recently clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) or transcription activator-like effectors were adapted for imaging endogenous loci; however, they are mostly limited to visualization of repetitive regions. Here, we report an efficient and scalable method named SHACKTeR (Short Homology and CRISPR/Cas9-mediated Knock-in of a TetO Repeat) for live cell imaging of specific chromosomal regions without the need for a pre-existing repetitive sequence. SHACKTeR requires only two modifications to the genome: CRISPR/Cas9-mediated knock-in of an optimized TetO repeat and its visualization by TetR-EGFP expression. Our simplified knock-in protocol, utilizing short homology arms integrated by polymerase chain reaction, was successful at labeling 10 different loci in HCT116 cells. We also showed the feasibility of knock-in into lamina-associated, heterochromatin regions, demonstrating that these regions prefer non-homologous end joining for knock-in. Using SHACKTeR, we were able to observe DNA replication at a specific locus by long-term live cell imaging. We anticipate the general applicability and scalability of our method will enhance causative analyses between gene function and compartmentalization in a high-throughput manner.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Proteínas Portadoras/genética , Técnicas de Sustitución del Gen/métodos , Hibridación Fluorescente in Situ/métodos , Imagen Individual de Molécula/métodos , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Reparación del ADN por Unión de Extremidades/genética , Expansión de las Repeticiones de ADN/genética , Células HCT116 , Células HEK293 , Humanos , Células K562 , Organismos Modificados Genéticamente , Homología de Secuencia de Ácido Nucleico
10.
Gene Ther ; 25(5): 376-391, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29930343

RESUMEN

Reproducible and stable transgene expression is an important goal in both basic research and biotechnology, with each application demanding a range of transgene expression. Problems in achieving stable transgene expression include multi-copy transgene silencing, chromosome-position effects, and loss of expression during long-term culture, induced cell quiescence, and/or cell differentiation. Previously, we described the "BAC TG-EMBED" method for copy-number dependent, chromosome position-independent expression of embedded transgenes within a BAC containing ~170 kb of the mouse Dhfr locus. Here we demonstrate wider applicability of the method by identifying a BAC and promoter combination that drives reproducible, copy-number dependent, position-independent transgene expression even after induced quiescence and/or cell differentiation into multiple cell types. Using a GAPDH BAC containing ~200 kb of the human GAPDH gene locus and a 1.2 kb human UBC promoter, we achieved stable GFP-ZeoR reporter expression in mouse NIH 3T3 cells after low-serum-induced cell cycle arrest or differentiation into adipocytes. More notably, GFP-ZeoR expression remained stable and copy-number dependent even after differentiation of mouse ESCs into several distinct lineages. These results highlight the potential use of BAC TG-EMBED as an expression platform for high-level but stable, long-term expression of transgene independent of cell proliferative or differentiated state.


Asunto(s)
Cromosomas Artificiales Bacterianos , Transfección/métodos , Transgenes , Animales , Diferenciación Celular/genética , Técnicas de Transferencia de Gen , Genes Reporteros , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Humanos , Ratones , Células 3T3 NIH , Regiones Promotoras Genéticas , Tetrahidrofolato Deshidrogenasa/genética , Transformación Genética
11.
Nat Mater ; 15(12): 1287-1296, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27548707

RESUMEN

Mechanical forces play critical roles in the function of living cells. However, the underlying mechanisms of how forces influence nuclear events remain elusive. Here, we show that chromatin deformation as well as force-induced transcription of a green fluorescent protein (GFP)-tagged bacterial-chromosome dihydrofolate reductase (DHFR) transgene can be visualized in a living cell by using three-dimensional magnetic twisting cytometry to apply local stresses on the cell surface via an Arg-Gly-Asp-coated magnetic bead. Chromatin stretching depended on loading direction. DHFR transcription upregulation was sensitive to load direction and proportional to the magnitude of chromatin stretching. Disrupting filamentous actin or inhibiting actomyosin contraction abrogated or attenuated force-induced DHFR transcription, whereas activating endogenous contraction upregulated force-induced DHFR transcription. Our findings suggest that local stresses applied to integrins propagate from the tensed actin cytoskeleton to the LINC complex and then through lamina-chromatin interactions to directly stretch chromatin and upregulate transcription.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica , Fenómenos Mecánicos , Transcripción Genética , Animales , Fenómenos Biomecánicos , Células CHO , Supervivencia Celular , Cricetinae , Cricetulus , Citoesqueleto/metabolismo , Matriz Nuclear/metabolismo
12.
bioRxiv ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712201

RESUMEN

Models of nuclear genome organization often propose a binary division into active versus inactive compartments, yet they overlook nuclear bodies. Here we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Whereas gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.

13.
Curr Opin Cell Biol ; 18(6): 632-8, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17046228

RESUMEN

Mitotic chromosome structure has been the cell biology equivalent of a 'riddle, wrapped in a mystery, inside an enigma'. Observations that genetic knockout or knockdown of condensin subunits or topoisomerase II cause only minimal perturbation in overall chromosome condensation, together with analysis of early stages of chromosome condensation and effects produced by histone H1 depletion, suggest a need to reconsider textbook models of mitotic chromosome condensation and organization.


Asunto(s)
Adenosina Trifosfatasas/ultraestructura , Segregación Cromosómica/genética , Cromosomas/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Mitosis/genética , Complejos Multiproteicos/ultraestructura , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestructura , Cromosomas/genética , Cromosomas/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Biológicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo
14.
ACS Synth Biol ; 12(5): 1424-1436, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37058298

RESUMEN

Fluorescence microscopy imaging of specific chromosomal sites is essential for genome architecture research. To enable visualization of endogenous loci in mammalian cells, programmable DNA-binding proteins such as TAL effectors and CRISPR/dCas9 are commonly utilized. In addition, site-specific insertion of a TetO repeat array, coupled with TetR-enhanced green fluorescent protein fusion protein expression, can be used for labeling nonrepetitive endogenous loci. Here, we performed a comparison of several live-cell chromosome tagging methods, including their effect on subnuclear positioning, expression of adjacent genes, and DNA replication timing. Our results showed that the CRISPR-based imaging method can delay DNA replication timing and sister chromatid resolution at certain region. However, subnuclear localization of the labeled locus and gene expression from adjacent loci were unaffected by either TetO/TetR or CRISPR-based methods, suggesting that CRISPR-based imaging could be used for applications that do not require DNA replication analysis.


Asunto(s)
Sistemas CRISPR-Cas , Momento de Replicación del ADN , Animales , Sistemas CRISPR-Cas/genética , Cromosomas , Genoma , Proteínas de Unión al ADN , Chaperonas Moleculares , Mamíferos
15.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961445

RESUMEN

Genome differential positioning within interphase nuclei remains poorly explored. We extended and validated TSA-seq to map genomic regions near nucleoli and pericentric heterochromatin in four human cell lines. Our study confirmed that smaller chromosomes localize closer to nucleoli but further deconvolved this by revealing a preference for chromosome arms below 36-46 Mbp in length. We identified two lamina associated domain subsets through their differential nuclear lamina versus nucleolar positioning in different cell lines which showed distinctive patterns of DNA replication timing and gene expression across all cell lines. Unexpectedly, active, nuclear speckle-associated genomic regions were found near typically repressive nuclear compartments, which is attributable to the close proximity of nuclear speckles and nucleoli in some cell types, and association of centromeres with nuclear speckles in hESCs. Our study points to a more complex and variable nuclear genome organization than suggested by current models, as revealed by our TSA-seq methodology.

16.
Nucleic Acids Res ; 38(11): e127, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20385594

RESUMEN

Chromosome position effects combined with transgene silencing of multi-copy plasmid insertions lead to highly variable and usually quite low expression levels of mini-genes integrated into mammalian chromosomes. Together, these effects greatly complicate obtaining high-level expression of therapeutic proteins in mammalian cells or reproducible expression of individual or multiple transgenes. Here, we report a simple, one-step procedure for obtaining high-level, reproducible mini-gene expression in mammalian cells. By inserting mini-genes at different locations within a BAC containing the DHFR housekeeping gene locus, we obtain copy-number-dependent, position-independent expression with chromosomal insertions of one to several hundred BAC copies. These multi-copy DHFR BAC insertions adopt similar large-scale chromatin conformations independent of their chromosome integration site, including insertions within centromeric heterochromatin. Prevention of chromosome position effects, therefore, may be the result of embedding the mini-gene within the BAC-specific large-scale chromatin structure. The expression of reporter mini-genes can be stably maintained during continuous, long-term culture in the presence of drug selection. Finally, we show that this method is extendable to reproducible, high-level expression of multiple mini-genes, providing improved expression of both single and multiple transgenes.


Asunto(s)
Efectos de la Posición Cromosómica , Cromosomas Artificiales Bacterianos , Transgenes , Animales , Cromatina/química , Cromosomas de los Mamíferos , Dosificación de Gen , Expresión Génica , Genes Reporteros , Ratones , Células 3T3 NIH , Tetrahidrofolato Deshidrogenasa/genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-34400557

RESUMEN

This work reviews nuclear compartments, defined broadly to include distinct nuclear structures, bodies, and chromosome domains. It first summarizes original cytological observations before comparing concepts of nuclear compartments emerging from microscopy versus genomic approaches and then introducing new multiplexed imaging approaches that promise in the future to meld both approaches. I discuss how previous models of radial distribution of chromosomes or the binary division of the genome into A and B compartments are now being refined by the recognition of more complex nuclear compartmentalization. The poorly understood question of how these nuclear compartments are established and maintained is then discussed, including through the modern perspective of phase separation, before moving on to address possible functions of nuclear compartments, using the possible role of nuclear speckles in modulating gene expression as an example. Finally, the review concludes with a discussion of future questions for this field.


Asunto(s)
Núcleo Celular , Genoma , Núcleo Celular/metabolismo , Cromosomas
18.
Methods Mol Biol ; 2532: 145-186, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35867249

RESUMEN

Distinct nuclear structures and bodies are involved in genome intranuclear positioning. Measuring proximity and relative distances of genomic loci to these nuclear compartments, and correlating this chromosome intranuclear positioning with epigenetic marks and functional readouts genome-wide, will be required to appreciate the true extent to which this nuclear compartmentalization contributes to regulation of genome functions. Here we present detailed protocols for TSA-seq, the first sequencing-based method for estimation of cytological proximity of chromosomal loci to spatially discrete nuclear structures, such as nuclear bodies or the nuclear lamina. TSA-seq uses Tyramide Signal Amplification (TSA) of immunostained cells to create a concentration gradient of tyramide-biotin free radicals which decays exponentially as a function of distance from a point-source target. Reaction of these free radicals with DNA deposits tyramide-biotin onto DNA as a function of distance from the point source. The relative enrichment of this tyramide-labeled DNA versus input DNA, revealed by DNA sequencing, can then be used as a "cytological ruler" to infer relative, or even absolute, mean chromosomal distances from immunostained nuclear compartments. TSA-seq mapping is highly reproducible and largely independent of the target protein or antibody choice for labeling a particular nuclear compartment. Our protocols include variations in TSA labeling conditions to provide varying spatial resolution as well as enhanced sensitivity. Our most streamlined protocol produces TSA-seq spatial mapping over a distance range of ~1 micron from major nuclear compartments using ~10-20 million cells.


Asunto(s)
Núcleo Celular , Cromosomas , Biotina/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromosomas/genética , Cromosomas/metabolismo , ADN/genética , ADN/metabolismo , Lámina Nuclear/metabolismo
19.
Nat Methods ; 5(4): 311-3, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18345005

RESUMEN

The difficulty in localizing specific cellular proteins by immuno-electron microscopy techniques limits applications of electron microscopy to cell biology. We found that in vivo immunogold labeling improves epitope accessibility, ultrastructural preservation and three-dimensional visualization, and allows correlated light and electron microscopy. We detected large-scale chromatin folding motifs within intact interphase nuclei of CHO cells and visualized the ultrastructure of DNA replication 'factories' labeled with GFP-proliferating cell nuclear antigen (PCNA).


Asunto(s)
Cromatina/ultraestructura , Replicación del ADN/fisiología , Microscopía Electrónica/métodos , Animales , Células CHO , Cricetinae , Cricetulus , Proteínas Fluorescentes Verdes/análisis , Inmunohistoquímica , Operón Lac , Nanopartículas del Metal , Antígeno Nuclear de Célula en Proliferación/análisis
20.
Genome Biol ; 22(1): 36, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446254

RESUMEN

We report SPIN, an integrative computational method to reveal genome-wide intranuclear chromosome positioning and nuclear compartmentalization relative to multiple nuclear structures, which are pivotal for modulating genome function. As a proof-of-principle, we use SPIN to integrate nuclear compartment mapping (TSA-seq and DamID) and chromatin interaction data (Hi-C) from K562 cells to identify 10 spatial compartmentalization states genome-wide relative to nuclear speckles, lamina, and putative associations with nucleoli. These SPIN states show novel patterns of genome spatial organization and their relation to other 3D genome features and genome function (transcription and replication timing). SPIN provides critical insights into nuclear spatial and functional compartmentalization.


Asunto(s)
Núcleo Celular/genética , Genoma Humano , Compartimento Celular , Cromatina , Mapeo Cromosómico , Cromosomas , Replicación del ADN , Histonas , Humanos , Células K562 , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA