Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731456

RESUMEN

The construction of high-performance n-type semiconductors is crucial for the advancement of organic electronics. As an attractive n-type semiconductor, molecular systems based on perylene diimide derivatives (PDIs) have been extensively investigated over recent years. Owing to the fascinating aggregated structure and high performance, S-heterocyclic annulated PDIs (SPDIs) are receiving increasing attention. However, the relationship between the structure and the electrical properties of SPDIs has not been deeply revealed, restricting the progress of PDI-based organic electronics. Here, we developed two novel SPDIs with linear and dendronized substituents in the imide position, named linear SPDI and dendronized SPDI, respectively. A series of structural and property characterizations indicated that linear SPDI formed a long-range-ordered crystalline structure based on helical supramolecular columns, while dendronized SPDI, with longer alkyl side chains, formed a 3D-ordered crystalline structure at a low temperature, which transformed into a hexagonal columnar liquid crystal structure at a high temperature. Moreover, no significant charge carrier transport signal was examined for linear SPDI, while dendronized SPDI had a charge carrier mobility of 3.5 × 10-3 cm2 V-1 s-1 and 2.1 × 10-3 cm2 V-1 s-1 in the crystalline and liquid crystalline state, respectively. These findings highlight the importance of the structure-function relationship in PDIs, and also offer useful roadmaps for the design of high-performance organic electronics for down-to-earth applications.

2.
Nanotechnology ; 33(22)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35158345

RESUMEN

The practical application of lithium-sulfur battery is seriously limited by the loss of active substances and the deterioration of cycle stability caused by the 'shuttle effect' of lithium polysulfides (LiPSs). In this work, graphene oxide (GO) coated covalent organic framework (COF) compound materials were synthesized as sulfur host material in spray-drying process. The polar groups on COF can efficiently adsorb LiPSs through lithiophilic interaction, which can reduce the 'shuttle effect' caused by soluble LiPSs. Besides, GO in the outer layer can wrap discrete sulfur to reduce the loss of active substances, which further improves the cycle stability of the cathode. The COF@GO/S cathode exhibits a high initial specific capacity of 848.4 mAh g-1and retains a capacity of 601.1 mAh g-1after 500 cycles at 1 C counting with a low capacity fading of 0.058% per cycle.

3.
Angew Chem Int Ed Engl ; 61(21): e202200670, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35238130

RESUMEN

Regulating the distribution of reactive oxygen species generated from H2 O2 activation is the prerequisite to ensuring the efficient and safe use of H2 O2 in the chemistry and life science fields. Herein, we demonstrate that constructing a dual Cu-Fe site through the self-assembly of single-atomic-layered Cu5 nanoclusters onto a FeS2 surface achieves selective H2 O2 activation with high efficiency. Unlike its unitary Cu or Fe counterpart, the dual Cu-Fe sites residing at the perimeter zone of the Cu5 /FeS2 interface facilitate H2 O2 adsorption and barrierless decomposition into ⋅OH via forming a bridging Cu-O-O-Fe complex. The robust in situ formation of ⋅OH governed by this atomic-layered catalyst enables the effective oxidation of several refractory toxic pollutants across a broad pH range, including alachlor, sulfadimidine, p-nitrobenzoic acid, p-chlorophenol, p-chloronitrobenzene. This work highlights the concept of building a dual catalytic site in manipulating selective H2 O2 activation on the surface molecular level towards efficient environmental control and beyond.

4.
Materials (Basel) ; 17(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38203941

RESUMEN

Noble metal-free electrocatalysts have received widespread attention in a hydrogen evolution reaction (HER) due to the importance of renewable energy development. Herein, a Co2P/CoP heterojunction embedded on an N-doped carbon (Co2P/CoP/NC) electrocatalyst was prepared via an in situ pyrolysis method. The as-prepared electrocatalyst exhibited efficient electrocatalytic activity for HER in an acidic solution. The Co2P/CoP/NC catalyst displayed an overpotential of 184 mV at 10 mA cm-2 and a low Tafel slope of 82 mV dec-1, which could be attributed to the tight Co2P/CoP heterojunction and the synergetic effect of Co2P/CoP and N-doped carbon. In addition, the electrochemical active surface area of Co2P/CoP/NC was 75.2 m2 g-1, which indicated that more active regions can be applied for the HER process. This report may pave a new way for the design of efficient and low-cost N-doped-carbon-supported 3d transition metal phosphide electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA