Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 577(7792): 711-716, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31969704

RESUMEN

SAGA (Spt-Ada-Gcn5-acetyltransferase) is a 19-subunit complex that stimulates transcription via two chromatin-modifying enzymatic modules and by delivering the TATA box binding protein (TBP) to nucleate the pre-initiation complex on DNA, a pivotal event in the expression of protein-encoding genes1. Here we present the structure of yeast SAGA with bound TBP. The core of the complex is resolved at 3.5 Å resolution (0.143 Fourier shell correlation). The structure reveals the intricate network of interactions that coordinate the different functional domains of SAGA and resolves an octamer of histone-fold domains at the core of SAGA. This deformed octamer deviates considerably from the symmetrical analogue in the nucleosome and is precisely tuned to establish a peripheral site for TBP, where steric hindrance represses binding of spurious DNA. Complementary biochemical analysis points to a mechanism for TBP delivery and release from SAGA that requires transcription factor IIA and whose efficiency correlates with the affinity of DNA to TBP. We provide the foundations for understanding the specific delivery of TBP to gene promoters and the multiple roles of SAGA in regulating gene expression.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Pichia , Regiones Promotoras Genéticas/genética , Proteína de Unión a TATA-Box/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Sitios de Unión , ADN de Hongos/química , ADN de Hongos/metabolismo , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Pichia/química , Pichia/genética , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/química , Factor de Transcripción TFIIA/química , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/metabolismo
2.
Nucleic Acids Res ; 51(14): 7552-7562, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37326009

RESUMEN

Natural prokaryotic defense via the CRISPR-Cas system requires spacer integration into the CRISPR array in a process called adaptation. To search for adaptation proteins with enhanced capabilities, we established a robust perpetual DNA packaging and transfer (PeDPaT) system that uses a strain of T7 phage to package plasmids and transfer them without killing the host, and then uses a different strain of T7 phage to repeat the cycle. We used PeDPaT to identify better adaptation proteins-Cas1 and Cas2-by enriching mutants that provide higher adaptation efficiency. We identified two mutant Cas1 proteins that show up to 10-fold enhanced adaptation in vivo. In vitro, one mutant has higher integration and DNA binding activities, and another has a higher disintegration activity compared to the wild-type Cas1. Lastly, we showed that their specificity for selecting a protospacer adjacent motif is decreased. The PeDPaT technology may be used for many robust screens requiring efficient and effortless DNA transduction.


Asunto(s)
Proteínas Asociadas a CRISPR , Proteínas de Escherichia coli , Escherichia coli , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN/genética , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Plásmidos/genética
3.
Elife ; 122024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38415718

RESUMEN

Sirtuin 6 (SIRT6) is an NAD+-dependent histone H3 deacetylase that is prominently found associated with chromatin, attenuates transcriptionally active promoters and regulates DNA repair, metabolic homeostasis and lifespan. Unlike other sirtuins, it has low affinity to free histone tails but demonstrates strong binding to nucleosomes. It is poorly understood how SIRT6 docking on nucleosomes stimulates its histone deacetylation activity. Here, we present the structure of human SIRT6 bound to a nucleosome determined by cryogenic electron microscopy. The zinc finger domain of SIRT6 associates tightly with the acidic patch of the nucleosome through multiple arginine anchors. The Rossmann fold domain binds to the terminus of the looser DNA half of the nucleosome, detaching two turns of the DNA from the histone octamer and placing the NAD+ binding pocket close to the DNA exit site. This domain shows flexibility with respect to the fixed zinc finger and moves with, but also relative to, the unwrapped DNA terminus. We apply molecular dynamics simulations of the histone tails in the nucleosome to show that in this mode of interaction, the active site of SIRT6 is perfectly poised to catalyze deacetylation of the H3 histone tail and that the partial unwrapping of the DNA allows even lysines close to the H3 core to reach the enzyme.


Asunto(s)
Nucleosomas , Sirtuinas , Humanos , Histonas , NAD , Cromatina , Glicosiltransferasas , Histona Desacetilasas , ADN
4.
Nat Struct Mol Biol ; 30(9): 1337-1345, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37550452

RESUMEN

Histone acetylation regulates most DNA transactions and is dynamically controlled by highly conserved enzymes. The only essential histone acetyltransferase (HAT) in yeast, Esa1, is part of the 1-MDa NuA4 complex, which plays pivotal roles in both transcription and DNA-damage repair. NuA4 has the unique capacity to acetylate histone targets located several nucleosomes away from its recruitment site. Neither the molecular mechanism of this activity nor its physiological importance are known. Here we report the structure of the Pichia pastoris NuA4 complex, with its core resolved at 3.4-Å resolution. Three subunits, Epl1, Eaf1 and Swc4, intertwine to form a stable platform that coordinates all other modules. The HAT module is firmly anchored into the core while retaining the ability to stretch out over a long distance. We provide structural, biochemical and genetic evidence that an unfolded linker region of the Epl1 subunit is critical for this long-range activity. Specifically, shortening the Epl1 linker causes severe growth defects and reduced H4 acetylation levels over broad chromatin regions in fission yeast. Our work lays the foundations for a mechanistic understanding of NuA4's regulatory role and elucidates how its essential long-range activity is attained.


Asunto(s)
Histonas , Proteínas de Saccharomyces cerevisiae , Histonas/genética , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina , Nucleosomas , Saccharomyces cerevisiae/metabolismo , Histona Acetiltransferasas/metabolismo , ADN , Acetilación
5.
FEBS J ; 288(10): 3135-3147, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32946670

RESUMEN

In eukaryotes, transcription of protein encoding genes is initiated by the controlled deposition of the TATA-box binding protein TBP onto gene promoters, followed by the ordered assembly of a pre-initiation complex. The SAGA co-activator is a 19-subunit complex that stimulates transcription by the action of two chromatin-modifying enzymatic modules, a transcription activator binding module, and by delivering TBP. Recent cryo electron microscopy structures of yeast SAGA with bound nucleosome or TBP reveal the architecture of the different functional domains of the co-activator. An octamer of histone fold domains is found at the core of SAGA. This octamer, which deviates considerably from the symmetrical analogue forming the nucleosome, establishes a peripheral site for TBP binding where steric hindrance represses interaction with spurious DNA. The structures point to a mechanism for TBP delivery and release from SAGA that requires TFIIA and whose efficiency correlates with the affinity of DNA to TBP. These results provide a structural basis for understanding specific TBP delivery onto gene promoters and the role played by SAGA in regulating gene expression. The properties of the TBP delivery machine harboured by SAGA are compared with the TBP loading device present in the TFIID complex and show multiple similitudes.


Asunto(s)
Regulación de la Expresión Génica , Nucleosomas , Saccharomyces cerevisiae/genética , TATA Box , Factor de Transcripción TFIID/genética , Transcripción Genética , Sitios de Unión , Secuencia Conservada , Histonas/genética , Histonas/metabolismo , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Transactivadores/metabolismo , Factor de Transcripción TFIID/metabolismo
6.
C R Biol ; 343(3): 247-255, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33621454

RESUMEN

The transcription of eukaryotic protein genes is controlled by a plethora of proteins which act together in multi-component complexes to facilitate the DNA dependent RNA polymerase II (Pol II) enzyme to bind to the transcription start site and to generate messenger RNA from the gene's coding sequence. The protein that guides the transcription machinery to the exact transcription start site is called TATA-box Binding Protein, or TBP. TBP is part of two large protein complexes involved in Pol II transcription, TFIID and SAGA. The two complexes share several subunits implicated in the interaction with TBP and contain proteins with structural elements highly homologous to nucleosomal histones. Despite the intensive study of transcription initiation, the mode of interaction of TBP with these complexes and its release upon DNA binding was elusive. In this study we demonstrate the quasi-atomic model of SAGA in complex with TBP. The structure reveals the intricate network of interactions that coordinate the different functional domains of SAGA and resolves a deformed octamer of histone-fold domains at the core of SAGA. This deformed octamer is precisely tuned to establish a peripheral site for TBP binding, where it is protected by steric hindrance against the binding of spurious DNA. Complementary biochemical analysis points to a mechanism for TBP delivery and release from SAGA that requires the general transcription factor TFIIA and whose efficiency correlates with the affinity of DNA to TBP.As the TBP binding machinery is highly similar in TFIID and SAGA, we demonstrated a universal mechanism of how TBP is delivered to gene promoters during transcription initiation.


La transcription des gènes des protéines eucaryotes est contrôlée par une pléthore de protéines agissant de concert sous forme de complexes multi-composants pour faciliter la liaison de l'enzyme ARN polymérase II ADN-dépendante (Pol II) au site d'initiation de la transcription et pour générer un ARN messager à partir de la séquence codante du gène. La protéine qui guide la machinerie de transcription vers le site d'initiation de la transcription est appelée protéine de liaison à la boîte TATA, ou TBP. TBP fait partie de deux complexes protéiques impliqués dans la transcription par la Pol II, TFIID et SAGA. Les deux complexes partagent plusieurs sous-unités impliquées dans l'interaction avec TBP et comportent des protéines présentant des éléments structuraux hautement homologues aux histones nucléosomiques. Malgré l'étude intensive de l'initiation de la transcription, le mode d'interaction de TBP avec ces complexes ainsi que sa libération lors de sa liaison de l'ADN étaient évasifs. Dans cette étude, nous avons déterminé un modèle quasi-atomique de SAGA en complexe avec TBP. La structure révèle le réseau d'interactions qui coordonnent les différents domaines fonctionnels de SAGA et résout un octamère déformé des domaines homologues aux histones au cœur de SAGA. Cet octamère déformé est précisément adapté pour établir un site périphérique de liaison à TBP, où ce dernier est protégé par une inhibition stérique contre la fixation d'un ADN parasite. L'analyse biochimique complémentaire a mis en évidence un mécanisme de libération de TBP de SAGA qui nécessite le facteur de transcription général TFIIA et dont l'efficacité corrèle avec l'affinité de l'ADN pour TBP.Comme le mécanisme de liaison de TBP est très similaire dans TFIID et SAGA, nous avons mis en évidence un mécanisme universel décrivant la manière dont TBP est délivré aux promoteurs de gènes lors de l'initiation de la transcription.


Asunto(s)
Transactivadores , Factores de Transcripción , Regiones Promotoras Genéticas , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Transcripción Genética
7.
Nature ; 426(6967): 630-5, 2003 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-14668855

RESUMEN

Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on Earth. The conversion of sunlight into chemical energy is driven by two multisubunit membrane protein complexes named photosystem I and II. We determined the crystal structure of the complete photosystem I (PSI) from a higher plant (Pisum sativum var. alaska) to 4.4 A resolution. Its intricate structure shows 12 core subunits, 4 different light-harvesting membrane proteins (LHCI) assembled in a half-moon shape on one side of the core, 45 transmembrane helices, 167 chlorophylls, 3 Fe-S clusters and 2 phylloquinones. About 20 chlorophylls are positioned in strategic locations in the cleft between LHCI and the core. This structure provides a framework for exploration not only of energy and electron transfer but also of the evolutionary forces that shaped the photosynthetic apparatus of terrestrial plants after the divergence of chloroplasts from marine cyanobacteria one billion years ago.


Asunto(s)
Proteínas de Arabidopsis , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema I/química , Pisum sativum/química , Proteínas de Plantas/química , Secuencia de Aminoácidos , Clorofila/química , Proteínas de Unión a Clorofila , Cristalografía por Rayos X , Dimerización , Transporte de Electrón , Modelos Moleculares , Datos de Secuencia Molecular , Plastocianina/metabolismo , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Vitamina K 1/química
8.
Sci Rep ; 10(1): 307, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941920

RESUMEN

Bacteriophage T7 is an intracellular parasite that recognizes its host via its tail and tail fiber proteins, known as receptor-binding proteins (RBPs). The RBPs attach to specific lipopolysaccharide (LPS) features on the host. Various studies have shown expansion of the phage's host range via mutations in the genes encoding the RBPs, whereas only a few have shown contraction of its host range. Furthermore, most experimental systems have not monitored the alteration of host range in the presence of several hosts simultaneously. Here we show that T7 phage grown in the presence of five restrictive strains and one permissive host, each with a different LPS form, gradually avoids recognition of the restrictive strains. Remarkably, avoidance of the restrictive strains was repeated in different experiments using six different permissive hosts. The evolved phages carried mutations that changed their specificity, as determined by sequencing of the genes encoding the RBPs. This system demonstrates a major role for RBPs in narrowing the range of futile infections. The system can be harnessed for host-range contraction in applications such as detection or elimination of a specific bacterial serotype by bacteriophages.


Asunto(s)
Bacteriófago T7/metabolismo , Evolución Molecular , Especificidad del Huésped , Bacteriófago T7/patogenicidad , Escherichia coli/metabolismo , Escherichia coli/virología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
9.
Nat Commun ; 9(1): 4666, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405110

RESUMEN

Transcription preinitiation complex assembly on the promoters of protein encoding genes is nucleated in vivo by TFIID composed of the TATA-box Binding Protein (TBP) and 13 TBP-associate factors (Tafs) providing regulatory and chromatin binding functions. Here we present the cryo-electron microscopy structure of promoter-bound yeast TFIID at a resolution better than 5 Å, except for a flexible domain. We position the crystal structures of several subunits and, in combination with cross-linking studies, describe the quaternary organization of TFIID. The compact tri lobed architecture is stabilized by a topologically closed Taf5-Taf6 tetramer. We confirm the unique subunit stoichiometry prevailing in TFIID and uncover a hexameric arrangement of Tafs containing a histone fold domain in the Twin lobe.


Asunto(s)
Regiones Promotoras Genéticas/genética , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/metabolismo , Levaduras/metabolismo , ADN de Hongos/química , ADN de Hongos/metabolismo , Modelos Moleculares , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/aislamiento & purificación
10.
Nat Commun ; 8(1): 1556, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29146944

RESUMEN

The transcription co-activator complex SAGA is recruited to gene promoters by sequence-specific transcriptional activators and by chromatin modifications to promote pre-initiation complex formation. The yeast Tra1 subunit is the major target of acidic activators such as Gal4, VP16, or Gcn4 but little is known about its structural organization. The 430 kDa Tra1 subunit and its human homolog the transformation/transcription domain-associated protein TRRAP are members of the phosphatidyl 3-kinase-related kinase (PIKK) family. Here, we present the cryo-EM structure of the entire SAGA complex where the major target of activator binding, the 430 kDa Tra1 protein, is resolved with an average resolution of 5.7 Å. The high content of alpha-helices in Tra1 enabled tracing of the majority of its main chain. Our results highlight the integration of Tra1 within the major epigenetic regulator SAGA.


Asunto(s)
Cromatina/metabolismo , Proteínas Fúngicas/metabolismo , Histona Acetiltransferasas/metabolismo , Transactivadores/metabolismo , Secuencia de Aminoácidos , Cromatina/química , Cromatina/ultraestructura , Microscopía por Crioelectrón , Proteínas Fúngicas/química , Proteínas Fúngicas/ultraestructura , Histona Acetiltransferasas/química , Histona Acetiltransferasas/ultraestructura , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Saccharomycetales/química , Saccharomycetales/metabolismo , Homología de Secuencia de Aminoácido , Transactivadores/química , Transactivadores/ultraestructura
11.
Nat Commun ; 6: 7382, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26066547

RESUMEN

Eukaryotic ribosomal proteins, unlike their bacterial homologues, possess nuclear localization signals (NLSs) to enter the cell nucleus during ribosome assembly. Here we provide a comprehensive comparison of bacterial and eukaryotic ribosomes to show that NLSs appear in conserved ribosomal proteins via remodelling of their RNA-binding domains. This finding enabled us to identify previously unknown NLSs in ribosomal proteins from humans, and suggests that, apart from promoting protein transport, NLSs may facilitate folding of ribosomal RNA.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Señales de Localización Nuclear/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Escherichia coli , Proteínas de Escherichia coli/química , Células HEK293 , Células HeLa , Humanos , Señales de Localización Nuclear/química , Transporte de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/química , Ribosomas , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química
12.
FEBS Lett ; 564(3): 274-80, 2004 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-15111109

RESUMEN

The evolution of photosystem (PS) I was probably initiated by the formation of a homodimeric reaction center similar to the one currently present in green bacteria. Gene duplication has generated a heterodimeric reaction center that subsequently evolved to the PSI present in cyanobacteria, algae and plant chloroplasts. During the evolution of PSI several attempts to maximize the efficiency of light harvesting took place in the various organisms. In the Chlorobiaceae, chlorosomes and FMO were added to the homodimeric reaction center. In cyanobacteria phycobilisomes and CP43' evolved to cope with the light limitations and stress conditions. The plant PSI utilizes a modular arrangement of membrane light-harvesting proteins (LHCI). We obtained structural information from the two ends of the evolutionary spectrum. Novel features in the structure of Chlorobium tepidum FMO are reported in this communication. Our structure of plant PSI reveals that the addition of subunit G provided the template for LHCI binding, and the addition of subunit H prevented the possibility of trimer formation and provided a binding site for LHCII and the onset of energy spillover from PSII to PSI.


Asunto(s)
Evolución Molecular , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/genética , Conformación Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chlorobium/química , Duplicación de Gen , Modelos Moleculares , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
13.
Photosynth Res ; 73(1-3): 193-206, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-16245122

RESUMEN

Science has always been drawn to uncover fundamental life processes. Photosynthesis is one, if not the most fascinating, of them. Within it, the protein complexes that catalyze light-induced electron transport and photophosphorylation are enchanting creations of evolution. Plant Photosystem I (PS I) is not the largest protein complex in nature but it is the most elaborate in the number of prosthetic groups involved in its fabric. Thirty years ago, one of us (NN) developed a fascination for this complex and, despite the apparent neglect (lack of publications in the last few years), never let it go. Only a crystal structure at 2 A resolution will satiate our curiosity. In this minireview, we trace the past, and end the article with a comment on future prospects. For the present situation, see Parag Chitnis (2001).

14.
Photosynth Res ; 81(3): 239-50, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-16034530

RESUMEN

Oxygenic photosynthesis is driven by two multi-subunit membrane protein complexes, Photosystem I and Photosystem II. In plants and green algae, both complexes are composed of two moieties: a reaction center (RC), where light-induced charge translocation occurs, and a peripheral antenna that absorbs light and funnels its energy to the reaction center. The peripheral antenna of PS I (LHC I) is composed of four gene products (Lhca 1-4) that are unique among the chlorophyll a/b binding proteins in their pronounced long-wavelength absorbance and in their assembly into dimers. The recently determined structure of plant Photosystem I provides the first relatively high-resolution structural model of a super-complex containing a reaction center and its peripheral antenna. We describe some of the structural features responsible for the unique properties of LHC I and discuss the advantages of the particular LHC I dimerization mode over monomeric or trimeric forms. In addition, we delineate some of the interactions between the peripheral antenna and the reaction center and discuss how they serve the purpose of dynamically altering the composition of LHC I in response to environmental pressure. Combining structural insight with spectroscopic data, we propose how altering LHC I composition may protect PS I from excessive light.

15.
Nat Struct Mol Biol ; 19(6): 560-7, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22664983

RESUMEN

Ribosomes are universally conserved enzymes that carry out protein biosynthesis. Bacterial and eukaryotic ribosomes, which share an evolutionarily conserved core, are thought to have evolved from a common ancestor by addition of proteins and RNA that bestow different functionalities to ribosomes from different domains of life. Recently, structures of the eukaryotic ribosome, determined by X-ray crystallography, have allowed us to compare these structures to previously determined structures of bacterial ribosomes. Here we describe selected bacteria- or eukaryote-specific structural features of the ribosome and discuss the functional implications of some of them.


Asunto(s)
Bacterias/química , Bacterias/citología , Células Eucariotas/química , Células Eucariotas/citología , Ribosomas/química , Animales , Bacterias/metabolismo , Células Eucariotas/metabolismo , Humanos , Modelos Moleculares , Biosíntesis de Proteínas , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
16.
Curr Opin Struct Biol ; 22(6): 759-67, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22884264

RESUMEN

The first X-ray structure of the eukaryotic ribosome at 3.0Å resolution was determined using ribosomes isolated and crystallized from the yeast Saccharomyces cerevisiae (Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M: The structure of the eukaryotic ribosome at 3.0 A resolution. Science 2011, 334:1524-1529). This accomplishment was possible due to progress in yeast ribosome biochemistry as well as recent advances in crystallographic methods developed for structure determination of prokaryotic ribosomes isolated from Thermus thermophilus and Escherichia coli. In this review we will focus on the development of isolation procedures that allowed structure determination (both cryo-EM and X-ray crystallography) to be successful for the yeast S. cerevisiae. Additionally we will introduce a new nomenclature that facilitates comparison of ribosomes from different species and kingdoms of life. Finally we will discuss the impact of the yeast 80S ribosome crystal structure on perspectives for future investigations.


Asunto(s)
Ribosomas/química , Saccharomyces cerevisiae/citología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , ARN de Hongos/química , ARN de Hongos/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura
17.
Science ; 334(6062): 1524-9, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22096102

RESUMEN

Ribosomes translate genetic information encoded by messenger RNA into proteins. Many aspects of translation and its regulation are specific to eukaryotes, whose ribosomes are much larger and intricate than their bacterial counterparts. We report the crystal structure of the 80S ribosome from the yeast Saccharomyces cerevisiae--including nearly all ribosomal RNA bases and protein side chains as well as an additional protein, Stm1--at a resolution of 3.0 angstroms. This atomic model reveals the architecture of eukaryote-specific elements and their interaction with the universally conserved core, and describes all eukaryote-specific bridges between the two ribosomal subunits. It forms the structural framework for the design and analysis of experiments that explore the eukaryotic translation apparatus and the evolutionary forces that shaped it.


Asunto(s)
Ribosomas/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas de Unión al ADN/ultraestructura , Modelos Moleculares , ARN de Hongos/ultraestructura , ARN Ribosómico/ultraestructura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura
18.
Science ; 330(6008): 1203-9, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-21109664

RESUMEN

Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation.


Asunto(s)
Biosíntesis de Proteínas , ARN Ribosómico/química , Proteínas Ribosómicas/química , Ribosomas/química , Ribosomas/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Cristalización , Cristalografía por Rayos X , Modelos Moleculares , Conformación de Ácido Nucleico , Iniciación de la Cadena Peptídica Traduccional , Unión Proteica , Conformación Proteica , ARN de Hongos/análisis , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN Mensajero/análisis , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Ribosómico/análisis , ARN Ribosómico/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/análisis , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Ribosomas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Proc Natl Acad Sci U S A ; 104(2): 462-6, 2007 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-17190827

RESUMEN

Intramembrane proteases catalyze peptide bond cleavage of integral membrane protein substrates. This activity is crucial for many biological and pathological processes. Rhomboids are evolutionarily widespread intramembrane serine proteases. Here, we present the 2.3-A-resolution crystal structure of a rhomboid from Escherichia coli. The enzyme has six transmembrane helices, five of which surround a short TM4, which starts deep within the membrane at the catalytic serine residue. Thus, the catalytic serine is in an externally exposed cavity, which provides a hydrophilic environment for proteolysis. Our results reveal a mechanism to enable water-dependent catalysis at the depth of the hydrophobic milieu of the membrane and suggest how substrates gain access to the sequestered rhomboid active site.


Asunto(s)
Serina Endopeptidasas/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Dominio Catalítico , Cristalografía por Rayos X , Cartilla de ADN/genética , ADN Bacteriano/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endopeptidasas/química , Endopeptidasas/genética , Endopeptidasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Membranas/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Solubilidad
20.
Bioessays ; 27(9): 914-22, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16108066

RESUMEN

Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on earth. The primary step in this process--the conversion of sunlight into chemical energy--is driven by four multi-subunit membrane protein complexes named photosystem I, photosystem II, cytochrome b(6)f complex and F-ATPase. Photosystem I generates the most negative redox potential in nature and thus largely determines the global amount of enthalpy in living systems. The recent structural determination of PSI complexes from cyanobacteria and plants sheds light on the evolutionary forces that shaped oxygenic photosynthesis. The fortuitous formation of our solar system in a space plentiful of elements, our distance from the sun and the long time of uninterrupted evolution enabled the perfection of photosynthesis and the evolution of advanced organisms. The available structural information complements the knowledge gained from genomic and proteomic data to illustrate a more precise scenario for the evolution of life systems on earth.


Asunto(s)
Evolución Biológica , Fotosíntesis , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Ambiente , Origen de la Vida , Oxígeno/metabolismo , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA