Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 61(2): 274-86, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26774283

RESUMEN

The shelterin proteins protect telomeres against activation of the DNA damage checkpoints and recombinational repair. We show here that a dimer of the shelterin subunit TRF2 wraps ∼ 90 bp of DNA through several lysine and arginine residues localized around its homodimerization domain. The expression of a wrapping-deficient TRF2 mutant, named Top-less, alters telomeric DNA topology, decreases the number of terminal loops (t-loops), and triggers the ATM checkpoint, while still protecting telomeres against non-homologous end joining (NHEJ). In Top-less cells, the protection against NHEJ is alleviated if the expression of the TRF2-interacting protein RAP1 is reduced. We conclude that a distinctive topological state of telomeric DNA, controlled by the TRF2-dependent DNA wrapping and linked to t-loop formation, inhibits both ATM activation and NHEJ. The presence of RAP1 at telomeres appears as a backup mechanism to prevent NHEJ when topology-mediated telomere protection is impaired.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Emparejamiento Base , ADN/metabolismo , Daño del ADN , Reparación del ADN por Unión de Extremidades , Células HeLa , Humanos , Lisina/metabolismo , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína , Complejo Shelterina , Transducción de Señal , Proteínas de Unión a Telómeros/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/química
2.
Nucleic Acids Res ; 45(4): 1820-1834, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-27923994

RESUMEN

Telomere repeat binding factor 2 (TRF2) has been increasingly recognized to be involved in telomere maintenance and DNA damage response. Here, we show that TRF2 directly binds SIRT6 in a DNA independent manner and that this interaction is increased upon replication stress. Knockdown of SIRT6 up-regulates TRF2 protein levels and counteracts its down-regulation during DNA damage response, leading to cell survival. Moreover, we report that SIRT6 deactetylates in vivo the TRFH domain of TRF2, which in turn, is ubiquitylated in vivo activating the ubiquitin-dependent proteolysis. Notably, overexpression of the TRF2cT mutant failed to be stabilized by SIRT6 depletion, demonstrating that the TRFH domain is required for its post-transcriptional modification. Finally, we report an inverse correlation between SIRT6 and TRF2 protein expression levels in a cohort of colon rectal cancer patients. Taken together our findings describe TRF2 as a novel SIRT6 substrate and demonstrate that acetylation of TRF2 plays a crucial role in the regulation of TRF2 protein stability, thus providing a new route for modulating its expression level during oncogenesis and damage response.


Asunto(s)
Daño del ADN , Sirtuinas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Acetilación , Antineoplásicos Fitogénicos/farmacología , Camptotecina/farmacología , Línea Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Inmunohistoquímica , Modelos Moleculares , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Proteolisis/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Sirtuinas/química , Especificidad por Sustrato , Proteína 2 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Ubiquitinación
3.
Nat Metab ; 6(2): 323-342, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38409325

RESUMEN

Cellular senescence affects many physiological and pathological processes and is characterized by durable cell cycle arrest, an inflammatory secretory phenotype and metabolic reprogramming. Here, by using dynamic transcriptome and metabolome profiling in human fibroblasts with different subtypes of senescence, we show that a homoeostatic switch that results in glycerol-3-phosphate (G3P) and phosphoethanolamine (pEtN) accumulation links lipid metabolism to the senescence gene expression programme. Mechanistically, p53-dependent glycerol kinase activation and post-translational inactivation of phosphate cytidylyltransferase 2, ethanolamine regulate this metabolic switch, which promotes triglyceride accumulation in lipid droplets and induces the senescence gene expression programme. Conversely, G3P phosphatase and ethanolamine-phosphate phospho-lyase-based scavenging of G3P and pEtN acts in a senomorphic way by reducing G3P and pEtN accumulation. Collectively, our study ties G3P and pEtN accumulation to controlling lipid droplet biogenesis and phospholipid flux in senescent cells, providing a potential therapeutic avenue for targeting senescence and related pathophysiology.


Asunto(s)
Glicerol , Glicerofosfatos , Metabolismo de los Lípidos , Humanos , Glicerol/metabolismo , Etanolaminas , Fosfatos
4.
Front Oncol ; 3: 48, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23509004

RESUMEN

A major issue in telomere research is to understand how the integrity of chromosome ends is controlled. The fact that different types of nucleoprotein complexes have been described at the telomeres of different organisms raises the question of whether they have in common a structural identity that explains their role in chromosome protection. We will review here how telomeric nucleoprotein complexes are structured, comparing different organisms and trying to link these structures to telomere biology. It emerges that telomeres are formed by a complex and specific network of interactions between DNA, RNA, and proteins. The fact that these interactions and associated activities are reinforcing each other might help to guarantee the robustness of telomeric functions across the cell cycle and in the event of cellular perturbations. We will also discuss the recent notion that telomeres have evolved specific systems to overcome the DNA topological stress generated during their replication and transcription. This will lead to revisit the way we envisage the functioning of telomeric complexes since the regulation of topology is central to DNA stability, replication, recombination, and transcription as well as to chromosome higher-order organization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA