Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 260, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39343903

RESUMEN

BACKGROUND: The production of surfactin, an extracellular accumulating lipopeptide produced by various Bacillus species, is a well-known representative of microbial biosurfactant. However, only limited information is available on the correlation between the growth rate of the production strain, such as B. subtilis BMV9, and surfactin production. To understand the correlation between biomass formation over time and surfactin production, the availability of glucose as carbon source was considered as main point. In fed-batch bioreactor processes, the B. subtilis BMV9 was used, a strain well-suited for high cell density fermentation. By adjusting the exponential feeding rates, the growth rate of the surfactin-producing strain, was controlled. RESULTS: Using different growth rates in the range of 0.075 and 0.4 h-1, highest surfactin titres of 36 g/L were reached at 0.25 h-1 with production yields YP/S of 0.21 g/g and YP/X of 0.7 g/g, while growth rates lower than 0.2 h-1 resulted in insufficient and slowed biomass formation as well as surfactin production (YP/S of 0.11 g/g and YP/X of 0.47 g/g for 0.075 h-1). In contrast, feeding rates higher than 0.25 h-1 led to a stimulation of overflow metabolism, resulting in increased acetate formation of up to 3 g/L and an accumulation of glucose due to insufficient conversion, leading to production yields YP/S of 0.15 g/g and YP/X of 0.46 g/g for 0.4 h-1. CONCLUSIONS: Overall, the parameter of adjusting exponential feeding rates have an important impact on the B. subtilis productivity in terms of surfactin production in fed-batch bioreactor processes. A growth rate of 0.25 h-1 allowed the highest surfactin production yield, while the total conversion of substrate to biomass remained constant at the different growth rates.


Asunto(s)
Bacillus subtilis , Biomasa , Reactores Biológicos , Fermentación , Glucosa , Lipopéptidos , Bacillus subtilis/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Lipopéptidos/biosíntesis , Lipopéptidos/metabolismo , Glucosa/metabolismo , Técnicas de Cultivo Celular por Lotes/métodos , Péptidos Cíclicos/biosíntesis , Péptidos Cíclicos/metabolismo , Tensoactivos/metabolismo
2.
Phytopathology ; 110(9): 1530-1540, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32687013

RESUMEN

Fungal pathogenicity is governed by environmental factors, with nitrogen playing a key role in triggering pathogenic development. Spores germinating on the plant cuticle are exposed to a nitrogen-free environment, and reprograming of nitrogen metabolism is required for bridging the time needed to gain access to the nitrogen sources of the host. Although degradation of endogenous purine bases efficiently generates ammonium and may allow the fungus to bridge the preinvasion nitrogen gap, the roles of the purine degradation pathway and of the key genes encoding allantoicase and urease are largely unknown in plant pathogenic fungi. To investigate the roles of the allantoicase and urease genes ALA1 and URE1 of the maize anthracnose fungus Colletotrichum graminicola in pathogenic development, we generated ALA1:eGFP and URE1:eGFP fusion strains as well as allantoicase- and urease-deficient mutants. Virulence assays, live cell, and differential interference contrast imaging, chemical complementation and employment of a urease inhibitor showed that the purine degradation genes ALA1 and URE1 are required for bridging nitrogen deficiency at early phases of the infection process and for full virulence. Application of the urease inhibitor acetohydroxamic acid did not only protect maize from C. graminicola infection, but also interfered with the infection process of the wheat powdery mildew fungus Blumeria graminis f. sp. tritici, the maize and broad bean rusts Puccinia sorghi and Uromyces viciae-fabae, and the potato late blight pathogen Phytophthora infestans. Our data strongly suggest that inhibition of the purine degradation pathway might represent a novel approach to control plant pathogenic fungi and oomycetes.


Asunto(s)
Colletotrichum , Enfermedades de las Plantas , Purinas , Ureasa , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA