Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 44(1): 14-30, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35723381

RESUMEN

Cells have developed a highly integrated system responsible for proteome stability, namely the proteostasis network (PN). As loss of proteostasis is a hallmark of aging and age-related diseases, the activation of PN modules can likely extend healthspan. Here, we present data on the bioactivity of an extract (SA223-S2BM) purified from the strain Salinispora arenicola TM223-S2 that was isolated from the soft coral Scleronephthya lewinsohni; this coral was collected at a depth of 65 m from the mesophotic Red Sea ecosystem EAPC (south Eilat, Israel). Treatment of human cells with SA223-S2BM activated proteostatic modules, decreased oxidative load, and conferred protection against oxidative and genotoxic stress. Furthermore, SA223-S2BM enhanced proteasome and lysosomal-cathepsins activities in Drosophila flies and exhibited skin protective effects as evidenced by effective inhibition of the skin aging-related enzymes, elastase and tyrosinase. We suggest that the SA223-S2BM extract constitutes a likely promising source for prioritizing molecules with anti-aging properties.

2.
Mar Drugs ; 19(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34436257

RESUMEN

Biomedical engineering combines engineering and materials methods to restore, maintain, improve, or replace different types of biological tissues. In tissue engineering, following major injury, a scaffold is designed to support the local growth of cells, enabling the development of new viable tissue. To provide the conditions for the mechanical and structural properties needed for the restored tissue and its appropriate functioning, the scaffold requires specific biochemical properties in order to ensure a correct healing process. The scaffold creates a support system and requires a suitable material that will transduce the appropriate signals for the regenerative process to take place. A scaffold composed of material that mimics natural tissue, rather than a synthetic material, will achieve better results. Here, we provide an overview of natural components of marine-derived origin, the collagen fibers characterization schematic is summarized in the graphical abstract. The use of collagen fibers for biomedical applications and their performances in cell support are demonstrated in an in vitro system and in tissue regeneration in vivo.


Asunto(s)
Antozoos , Colágeno/química , Andamios del Tejido/química , Animales , Organismos Acuáticos , Humanos , Ingeniería de Tejidos
3.
Mar Drugs ; 18(8)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796603

RESUMEN

Scaffold material is essential in providing mechanical support to tissue, allowing stem cells to improve their function in the healing and repair of trauma sites and tissue regeneration. The scaffold aids cell organization in the damaged tissue. It serves and allows bio mimicking the mechanical and biological properties of the target tissue and facilitates cell proliferation and differentiation at the regeneration site. In this study, the developed and assayed bio-composite made of unique collagen fibers and alginate hydrogel supports the function of cells around the implanted material. We used an in vivo rat model to study the scaffold effects when transplanted subcutaneously and as an augment for tendon repair. Animals' well-being was measured by their weight and daily activity post scaffold transplantation during their recovery. At the end of the experiment, the bio-composite was histologically examined, and the surrounding tissues around the implant were evaluated for inflammation reaction and scarring tissue. In the histology, the formation of granulation tissue and fibroblasts that were part of the inclusion process of the implanted material were noted. At the transplanted sites, inflammatory cells, such as plasma cells, macrophages, and giant cells, were also observed as expected at this time point post transplantation. This study demonstrated not only the collagen-alginate device biocompatibility, with no cytotoxic effects on the analyzed rats, but also that the 3D structure enables cell migration and new blood vessel formation needed for tissue repair. Overall, the results of the current study proved for the first time that the implantable scaffold for long-term confirms the well-being of these rats and is correspondence to biocompatibility ISO standards and can be further developed for medical devices application.


Asunto(s)
Antozoos/química , Materiales Biocompatibles , Colágenos Fibrilares/química , Implantes Experimentales , Procedimientos Ortopédicos/instrumentación , Lesiones del Manguito de los Rotadores/cirugía , Manguito de los Rotadores/cirugía , Andamios del Tejido , Alginatos/química , Animales , Materiales Biocompatibles/toxicidad , Modelos Animales de Enfermedad , Colágenos Fibrilares/aislamiento & purificación , Colágenos Fibrilares/toxicidad , Reacción a Cuerpo Extraño/etiología , Reacción a Cuerpo Extraño/patología , Hidrogeles , Implantes Experimentales/efectos adversos , Masculino , Procedimientos Ortopédicos/efectos adversos , Diseño de Prótesis , Ratas Wistar , Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/patología , Factores de Tiempo , Andamios del Tejido/efectos adversos , Cicatrización de Heridas
4.
Mar Drugs ; 18(9)2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911774

RESUMEN

The strain Aspergillus chevalieri TM2-S6 was isolated from the sponge Axinella and identified according to internal transcribed spacer (ITS) molecular sequence homology with Aspergillus species from the section Restricti. The strain was cultivated 9 days on potato dextrose broth (PDB), and the medium evaluated as antioxidant on primary normal human dermal fibroblasts (NHDF). The cultivation broth was submitted to sterile filtration, lyophilized and used without any further processing to give the Aspergillus chevalieri TM2-S6 cultivation broth ingredient named ACBB. ACCB contains two main compounds: tetrahydroauroglaucin and flavoglaucin. Under oxidative stress, ACCB showed a significant promotion of cell viability. To elucidate the mechanism of action, the impact on a panel of hundreds of genes involved in fibroblast physiology was evaluated. Thus, ACCB stimulates cell proliferation (VEGFA, TGFB3), antioxidant response (GPX1, SOD1, NRF2), and extracellular matrix organization (COL1A1, COL3A1, CD44, MMP14). ACCD also reduced aging (SIRT1, SIRT2, FOXO3). These findings indicate that Aspergillus chevalieri TM2-S6 cultivation broth exhibits significant in vitro skin protection of human fibroblasts under oxidative stress, making it a potential cosmetic ingredient.


Asunto(s)
Antioxidantes/farmacología , Aspergillus/metabolismo , Fibroblastos/efectos de los fármacos , Gentisatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Piel/efectos de los fármacos , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Axinella/microbiología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citoprotección , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Gentisatos/química , Gentisatos/aislamiento & purificación , Humanos , Peróxido de Hidrógeno/toxicidad , Piel/metabolismo , Piel/patología , Envejecimiento de la Piel/efectos de los fármacos
5.
Int J Mol Sci ; 21(9)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392868

RESUMEN

2,4-Dichlorophenol (2,4-DCP) is a ubiquitous environmental pollutant categorized as a priority pollutant by the United States (US) Environmental Protection Agency, posing adverse health effects on humans and wildlife. Bioremediation is proposed as an eco-friendly, cost-effective alternative to traditional physicochemical remediation techniques. In the present study, fungal strains were isolated from marine invertebrates and tested for their ability to biotransform 2,4-DCP at a concentration of 1 mM. The most competent strains were studied further for the expression of catechol dioxygenase activities and the produced metabolites. One strain, identified as Tritirachium sp., expressed high levels of extracellular catechol 1,2-dioxygenase activity. The same strain also produced a dechlorinated cleavage product of the starting compound, indicating the assimilation of the xenobiotic by the fungus. This work also enriches the knowledge about the mechanisms employed by marine-derived fungi in order to defend themselves against chlorinated xenobiotics.


Asunto(s)
Basidiomycota/fisiología , Clorofenoles/metabolismo , Invertebrados/microbiología , Animales , Organismos Acuáticos/microbiología , Basidiomycota/enzimología , Basidiomycota/aislamiento & purificación , Biodegradación Ambiental , Catecol 1,2-Dioxigenasa/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Simbiosis , Contaminantes Químicos del Agua/metabolismo
6.
BMC Evol Biol ; 19(1): 116, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170912

RESUMEN

BACKGROUND: Our ability to investigate processes shaping the evolutionary diversification of corals (Cnidaria: Anthozoa) is limited by a lack of understanding of species boundaries. Discerning species of corals has been challenging due to a multitude of factors, including homoplasious and plastic morphological characters and the use of molecular markers that are either not informative or have not completely sorted. Hybridization can also blur species boundaries by leading to incongruence between morphology and genetics. We used traditional DNA barcoding and restriction-site associated DNA sequencing combined with coalescence-based and allele-frequency methods to elucidate species boundaries and simultaneously examine the potential role of hybridization in a speciose genus of octocoral, Sinularia. RESULTS: Species delimitations using two widely used DNA barcode markers, mtMutS and 28S rDNA, were incongruent with one another and with the morphospecies identifications. When mtMutS and 28S were concatenated, a 0.3% genetic distance threshold delimited the majority of morphospecies. In contrast, 12 of the 15 examined morphospecies formed well-supported monophyletic clades in both concatenated RAxML phylogenies and SNAPP species trees of > 6000 RADSeq loci. DAPC and Structure analyses also supported morphospecies assignments, but indicated the potential for two additional cryptic species. Three morphologically distinct species pairs could not, however, be distinguished genetically. ABBA-BABA tests demonstrated significant admixture between some of those species, suggesting that hybridization may confound species delimitation in Sinularia. CONCLUSIONS: A genomic approach can help to guide species delimitation while simultaneously elucidating the processes generating coral diversity. Results support the hypothesis that hybridization is an important mechanism in the evolution of Anthozoa, including octocorals, and future research should examine the contribution of this mechanism in generating diversity across the coral tree of life.


Asunto(s)
Antozoos/genética , Hibridación Genética , Animales , Antozoos/clasificación , Código de Barras del ADN Taxonómico , Análisis Discriminante , Funciones de Verosimilitud , Filogenia , Análisis de Componente Principal , Análisis de Secuencia de ADN , Especificidad de la Especie
7.
Mar Drugs ; 17(12)2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31801271

RESUMEN

The fungi Chrysosporium lobatum TM-237-S5 was isolated from the sponge Acanthella cavernosa, collected from the mesophotic coral ecosystem of the Red Sea. The strain was cultivated on a potato dextrose agar (PDA) medium, coupling solid-state fermentation and solid-state extraction (SSF/SSE) with a neutral macroreticular polymeric adsorbent XAD Amberlite resin (AMBERLITE XAD1600N). The SSF/SSE lead to high chemodiversity and productivity compared to classical submerged cultivation. Ten phenalenone related compounds were isolated and fully characterized by one-dimensional and two-dimensional NMR and HRMS. Among them, four were found to be new compounds corresponding to isoconiolactone, (-)-peniciphenalenin F, (+)-8-hydroxyscleroderodin, and (+)-8-hydroxysclerodin. It is concluded that SSF/SSE is a powerful strategy, opening a new era for the exploitation of microbial secondary metabolites.


Asunto(s)
Chrysosporium/metabolismo , Fenalenos/aislamiento & purificación , Poríferos/microbiología , Animales , Medios de Cultivo , Ecosistema , Fermentación , Océano Índico , Fenalenos/química , Metabolismo Secundario
8.
Mar Drugs ; 17(10)2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31575010

RESUMEN

Chlorophenols (CPs) are environmental pollutants that are produced through various anthropogenic activities and introduced in the environment. Living organisms, including humans, are exposed to these toxic xenobiotics and suffer from adverse health effects. More specifically, 2,4-dichlorophenol (2,4-DCP) is released in high amounts in the environment and has been listed as a priority pollutant by the US Environmental Protection Agency. Bioremediation has been proposed as a sustainable alternative to conventional remediation methods for the detoxification of phenolic compounds. In this work, we studied the potential of fungal strains isolated as symbionts of marine invertebrates from the underexplored mesophotic coral ecosystems. Hence, the unspecific metabolic pathways of these fungal strains are being explored in the present study, using the powerful analytical capabilities of a UHPLC-HRMS/MS. The newly identified 2,4-DCP metabolites add significantly to the knowledge of the transformation of such pollutants by fungi, since such reports are scarce.


Asunto(s)
Organismos Acuáticos/microbiología , Clorofenoles/metabolismo , Hongos/metabolismo , Invertebrados/microbiología , Contaminantes Químicos del Agua/metabolismo , Animales , Antozoos/metabolismo , Biodegradación Ambiental , Ecosistema , Humanos , Redes y Vías Metabólicas/fisiología , Fenoles/metabolismo , Simbiosis/fisiología , Xenobióticos/metabolismo
9.
Mar Drugs ; 16(4)2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29570651

RESUMEN

The challenge to develop grafts for tissue regeneration lies in the need to obtain a scaffold that will promote cell growth in order to form new tissue at a trauma-damaged site. Scaffolds also need to provide compatible mechanical properties that will support the new tissue and facilitate the desired physiological activity. Here, we used natural materials to develop a bio-composite made of unique collagen embedded in an alginate hydrogel material. The collagen fibers used to create the building blocks exhibited a unique hyper-elastic behavior similar to that of natural human tissue. The prominent mechanical properties, along with the support of cell adhesion affects cell shape and supports their proliferation, consequently facilitating the formation of a new tissue-like structure. The current study elaborates on these unique collagen fibers, focusing on their structure and biocompatibility, in an in vitro model. The findings suggest it as a highly appropriate material for biomedical applications. The promising in vitro results indicate that the distinctive collagen fibers could serve as a scaffold that can be adapted for tissue regeneration, in support of healing processes, along with maintaining tissue mechanical properties for the new regenerate tissue formation.


Asunto(s)
Antozoos/química , Colágeno/química , Ensayo de Materiales , Células 3T3-L1 , Animales , Fenómenos Biomecánicos , Hidrogeles/química , Ratones , Andamios del Tejido
10.
Mol Phylogenet Evol ; 112: 174-184, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28467886

RESUMEN

The development of coalescent-based and other multilocus methods for species delimitation has facilitated the identification of cryptic species complexes across the tree of life. A recent taxonomic revision of the ecologically important soft coral genus Ovabunda validated 11morphospecies, all with type localities and overlapping geographic ranges in the Red Sea. A subsequent molecular phylogenetic analysis using mitochondrial and 28S nrDNA genes divided the genus into just two clades, with no apparent genetic distinctions among morphospecies. To further explore species boundaries among morphospecies of Ovabunda we sequenced three additional nuclear genes (ITS, ATPSα, ATPSß), and obtained data for 1332 unlinked SNPs from restriction-site associated DNA sequencing. Both coalescent-based and allele-sharing species delimitation analyses supported four species of Ovabunda, each of which included multiple morphotypes encompassing the full range of morphological variation observed within the genus. All four species occurred over the same depth range of 5-41m, and were sympatric at sites separated by 1100km in the Red Sea. The only characters that have been found to distinguish three of the four species are diagnostic substitutions in the nuclear genome; the fourth differs by exhibiting polyp pulsation, a behavioral trait that can be assessed only in live colonies. The lack of any obvious morphological, life history, ecological or geographical differences among these four species begs the question of what drove the evolution and maintenance of reproductive isolating mechanisms in this cryptic species complex.


Asunto(s)
Antozoos/anatomía & histología , Fenómenos Ecológicos y Ambientales , Geografía , Alelos , Animales , Antozoos/genética , Código de Barras del ADN Taxonómico , Océano Índico , Funciones de Verosimilitud , Desequilibrio de Ligamiento/genética , Filogenia , Polimorfismo de Nucleótido Simple/genética , Especificidad de la Especie
11.
J Exp Biol ; 220(Pt 18): 3327-3335, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28705830

RESUMEN

We report here the biochemical, molecular and ultrastructural features of a unique organization of fibrillar collagen extracted from the octocoral Sarcophyton ehrenbergi Collagen, the most abundant protein in the animal kingdom, is often defined as a structural component of extracellular matrices in metazoans. In the present study, collagen fibers were extracted from the mesenteries of S. ehrenbergi polyps. These fibers are organized as filaments and further compacted as coiled fibers. The fibers are uniquely long, reaching an unprecedented length of tens of centimeters. The diameter of these fibers is 9±0.37 µm. The amino acid content of these fibers was identified using chromatography and revealed close similarity in content to mammalian type I and II collagens. The ultrastructural organization of the fibers was characterized by means of high-resolution microscopy and X-ray diffraction. The fibers are composed of fibrils and fibril bundles in the range of 15 to 35 nm. These data indicate a fibrillar collagen possessing structural aspects of both types I and II collagen, a highly interesting and newly described form of fibrillar collagen organization.


Asunto(s)
Antozoos/química , Colágenos Fibrilares/química , Animales , Antozoos/ultraestructura , Colágenos Fibrilares/ultraestructura , Microscopía Electrónica de Transmisión , Difracción de Rayos X
12.
Mar Drugs ; 14(2)2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26907302

RESUMEN

A dichloromethane extract of the soft coral Rhytisma fulvum fulvum collected in Madagascar afforded a novel compound possessing an unprecedented pentacyclic skeleton, bisdioxycalamenene (1), as well as seven known sesquiterpenes. The structures of the compounds were elucidated using 1D and 2D NMR techniques, as well as high-resolution mass spectrometry. The absolute configuration of 1 was determined using X-ray diffraction analysis and anomalous dispersion effects. The structure elucidation and a possible biogenesis of the compound are discussed.


Asunto(s)
Antozoos/química , Sesquiterpenos/aislamiento & purificación , Terpenos/aislamiento & purificación , Animales , Madagascar , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Sesquiterpenos/química , Terpenos/química , Difracción de Rayos X
13.
Zookeys ; 1188: 275-304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38239385

RESUMEN

Molecular systematic studies of the anthozoan class Octocorallia have revealed widespread incongruence between phylogenetic relationships and taxonomic classification at all levels of the Linnean hierarchy. Among the soft coral taxa in order Malacalcyonacea, the family Alcyoniidae and its type genus Alcyonium have both been recognised to be highly polyphyletic. A recent family-level revision of Octocorallia established a number of new families for genera formerly considered to belong to Alcyoniidae, but revision of Alcyonium is not yet complete. Previous molecular studies have supported the placement of Alcyoniumverseveldti (Benayahu, 1982) in family Cladiellidae rather than Alcyoniidae, phylogenetically distinct from the other three genera in that family. Here we describe a new genus, Ofwegenumgen. nov. to accommodate O.verseveldticomb. nov. and three new species of that genus, O.coronalucissp. nov., O.kloogisp. nov., and O.collisp. nov., bringing the total number of species in this genus to four. Ofwegenumgen. nov. is a rarely encountered genus so far known from only a few locations spanning the Indian and western Pacific Oceans. We present the morphological characters of each species and use molecular data from both DNA barcoding and target-enrichment of conserved elements to explore species boundaries and phylogenetic relationships within the genus.

14.
Microorganisms ; 12(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38258023

RESUMEN

The gill tissue of bivalve mollusks hosts rich symbiotic microbial communities that may contribute to host health. Spondylus spinosus is an invasive Lessepsian oyster in the Eastern Mediterranean Sea that has become highly abundant while constantly expanding its range northwestward. Using 16S rRNA gene amplicon sequencing, we examined how temperature affects S. spinosus oysters and their gill microbiota in a series of experiments: exposing them to the current annual seawater temperature range, to the colder temperature of the Western Mediterranean Sea, and to the elevated temperature as predicted under global warming scenarios. The bacterial genus Endozoicomonas dominated the communities of the S. spinosus, mainly upon exposure to winter-like (16 °C) temperatures. Exposure to the elevated seawater temperature resulted in a significant change in the bacterial communities, while the oysters maintained normal functioning, suggesting that the oyster may survive a seawater warming scenario. Exposure to 11 °C led to the health deterioration of the oysters, the emergence of opportunistic pathogens, such as Arcobacter, Vibrio, Colwelliaceae, and Pseudoalteromonas, and a decline in the relative abundance of Endozoicomonas, suggesting that S. spinosus might not survive Western Mediterranean Sea winters. Both the host and its gill bacteria are thus greatly affected by temperature, which could consequently restrict the range of expansion of this and other invasive oysters.

15.
J Exp Biol ; 216(Pt 15): 2789-97, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23619416

RESUMEN

Marine larvae are often considered as drifters that collide with larval collectors as passive particles. The trajectories of Bugula neritina larvae and of polystyrene beads were recorded in the velocity field of a vertical cylinder. The experiments illustrated that the trajectories of larvae and of beads may differ markedly. By considering a larva as a self-propelled mechanical microswimmer, a mathematical model of its motion in the two-dimensional velocity field of a long cylinder was formulated. Simulated larval trajectories were compared with experimental observations. We calculated the ratio η of the probability of contact of a microswimmer with a cylinder to the probability of contact of a passive particle with the cylinder. We found that depending on the ratio S of the swimming velocity of the microswimmer to the velocity of the ambient current, the probability of contact of a microswimmer with a collector may be orders of magnitude larger than the probability of contact of a passive particle with the cylinder: for S≈0.01, η≈1; for S≈0.1, η≈10; and for S≈1, η≈100.


Asunto(s)
Organismos Acuáticos/fisiología , Briozoos/fisiología , Hidrodinámica , Animales , Simulación por Computador , Larva/fisiología , Microesferas , Modelos Biológicos , Movimiento , Poliestirenos/química , Probabilidad , Propiedades de Superficie , Natación/fisiología
16.
Ecology ; 103(9): e3760, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35582927

RESUMEN

Many species across a wide range of taxa and habitats display phenological shifts and differences in response to both environmental gradients and climate change. Moreover, the wide-scale decline of numerous ecosystems is leading to increasing efforts to identify zones that might serve as natural refuges from various disturbances, including ocean warming. One such refuge was suggested to be that of the deep coral reefs, but whether depth can provide coral populations with a viable and reproductive refuge remains unclear. Given the global coral-reef degradation and the key role that corals play as ecosystem engineers, their reproductive ecology has been widely studied. A particular knowledge gap nonetheless exists regarding coral reproductive phenology along a depth gradient. Filling in this gap may uncover the environmental cues that regulate coral reproduction, leading to better predictions of population connectivity, and their possible responses to climate change and other environmental changes. Here, using long-term in situ observations of the soft coral Rhytisma fulvum's reproductive activity along its entire depth range (0-45 m), we examined the relationship among several environmental factors and the coral's reproductive phenology and activity over five successive annual breeding seasons. Compared with the shallow depths, a lower number of reproducing colonies was found in habitats deeper than 30 m, highlighting possible constraints on coral reproduction at the deeper end of their range. Our results further revealed that an increase in seawater temperature over 1-2-day intervals during the breeding season correlated with the onset of reproductive activity along the depth gradient, leading to different reproductive periodicities in different depths. These differences suggest that differential temperature regimes and reproductive timing across depth may create intraspecific temporal reproductive segregation, possibly reducing connectivity among populations along a depth gradient. Moreover, we found high variability among years in both the timing of breeding activities and in the level of reproductive synchrony among corals from different depths. Overall, our study questions whether depth can provide a long-term and viable refuge for corals in the face of global environmental changes.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Arrecifes de Coral , Ecosistema , Reproducción , Agua de Mar
17.
Front Microbiol ; 13: 1005471, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504779

RESUMEN

Symbiotic associations, widespread in terrestrial and marine ecosystems, are of considerable ecological importance. Many tropical coral species are holobionts, formed by the obligate association between a cnidarian host and endosymbiotic dinoflagellates of the family Symbiodiniaceae. The latter are abundant on coral reefs from very shallow water down to the upper mesophotic zone (30-70 m). The research on scleractinians has revealed that the photosymbiont lineages present in the cnidarian host play an important role in the coral's ability to thrive under different environmental conditions, such as light regime and temperature. However, little is known regarding octocoral photosymbionts, and in particular regarding those found deeper than 30 m. Here, we used ribosomal (ITS2) and chloroplast (23S) markers to uncover, for the first time, the dominant Symbiodiniaceae taxa present in 19 mesophotic octocoral species (30-70 m depth) from the Gulf of Aqaba/Eilat (northern Red Sea). In addition, using high-throughput sequencing of the ITS2 region we characterized both the dominant and the rare Symbiodiniaceae lineages found in several species across depth. The phylogenetic analyses of both markers were in agreement and revealed that most of the studied mesophotic octocorals host the genus Cladocopium. Litophyton spp. and Klyxum utinomii were exceptions, as they harbored Symbiodinium and Durusdinium photosymbionts, respectively. While the dominant algal lineage of each coral species did not vary across depth, the endosymbiont community structure significantly differed between host species, as well as between different depths for some host species. The findings from this study contribute to the growing global-catalogue of Cnidaria-Symbiodiniaceae associations. Unravelling the Symbiodiniaceae composition in octocoral holobionts across environmental gradients, depth in particular, may enable a better understanding of how specialized those associations are, and to what extent coral holobionts are able to modify their photosymbionts.

18.
Zootaxa ; 5093(4): 421-444, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35391476

RESUMEN

The type of the xeniid soft coral Sansibia flava (May, 1898) is re-described for the first time and its morphological diagnosis is presented. A subsequent integrated analysis of molecular and morphological characters of related Xeniidae, including species indigenous to the Indo-Pacific Ocean and invasive in the Atlantic (Brazil), led to the description of a new Sansibia species, as well as two new genera comprising an additional three new species. All of these taxa are encrusting, with polyps arising directly from a spreading basal membrane. Molecular phylogenetic analyses show that these genera are not sister taxa, thus further emphasizing the remarkable phylogenetic diversity of xeniids with such a growth form. The sclerites of all species are uniformly ellipsoid platelets, abundant throughout the colony. The species exhibit restricted, non-overlapping geographic ranges, with distinct genotypes (molecular operational taxonomic units) found in different marine realms. The results emphasize the importance of re-examination of original old type material while applying molecular phylogenetic analyses in order to delineate species boundaries and to recognize biodiversity patterns.


Asunto(s)
Antozoos , Animales , Biodiversidad , Filogenia
19.
Environ Microbiol ; 13(6): 1467-76, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21635673

RESUMEN

Gill bacterial communities of Chama pacifica, an Indo-Pacific invasive oyster to the eastern Mediterranean Sea, were compared with those of Chama savignyi, its northern Red Sea congeneric species. Summer and winter bacterial populations were characterized and compared using 16S rDNA clone libraries, and seasonal population dynamics were monitored by automated ribosomal intergenic spacer analysis (ARISA). Clone libraries revealed a specific clade of bacteria, closely related to marine endosymbionts from the Indo-Pacific, found in both ecosystems, of which one taxon was conserved in oysters from both sites. This taxon was dominant in summer libraries and was weakly present in winter ones, where other members of this group were dominant. ARISA results revealed significant seasonal variation in bacterial populations of Mediterranean Sea oysters, as opposed to Red Sea ones that were stable throughout the year. We suggest that this conserved association between bacteria and oyster reflects either a symbiosis between the oyster host and some of its bacteria, a co-invasion of both parties, or both.


Asunto(s)
Bacterias/genética , Branquias/microbiología , Metagenoma , Ostreidae/microbiología , Microbiología del Agua , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Especies Introducidas , Mar Mediterráneo , Filogenia , ARN Ribosómico 16S/genética , Simbiosis
20.
Mar Environ Res ; 163: 105215, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33360640

RESUMEN

Coral reefs are threatened worldwide by global climate change, manifested in anthropogenic ocean warming and acidification. Despite the importance of coral sexual reproduction for the continuity of coral reefs, our understanding of the extent of the impact of climate change on coral sexual reproduction, particularly on coral reproductive phenology and early life stages, is limited. Here, we experimentally examined the effects of predicted end-of-the-century seawater conditions on the sexual reproduction and photosynthetic capacity of a Red-Sea zooxanthellate octocoral, Rhytisma fulvum. Sexually mature colonies were exposed to ambient temperature and pH conditions and to Representative Concentration Pathway (RCP) conditions (4.5 and 8.5), five weeks prior to their expected surface-brooding event. The reproductive phenology of the colonies under the simulated seawater conditions was compared to that on the natural reef. In addition, subsequent planulae development and their metamorphosis into primary polyps under the same RCP conditions as their parent colonies were monitored in a running seawater system. The results reveal that both RCP conditions led to a change in the timing of onset of the surface-brooding event and its synchronicity. In contrast, the surface-brooding event under ambient conditions co-occurred with that of the in-situ reef colonies and maintained its synchrony. Similarly, planula survival and polyp metamorphosis rate were significantly reduced under both RCP conditions compared to propagules reared under ambient conditions. In addition, the photosynthetic capacity of the parent colonies under both RCPs showed a reduction relative to that under the ambient conditions in the experiment, suggesting a reduction in carbon fixation during the late stages of gametogenesis. While our findings indicate that octocoral reproductive phenology is affected by environmental changes, further work is required in order to elucidate the long-term implications for the R. fulvum population in the northern Red Sea.


Asunto(s)
Antozoos , Animales , Cambio Climático , Arrecifes de Coral , Océano Índico , Reproducción , Agua de Mar , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA