Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nano Lett ; 23(5): 1830-1835, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36651800

RESUMEN

In the Dirac semimetal BaNiS2, the Dirac nodes are located along the Γ-M symmetry line of the Brillouin zone, instead of being pinned at fixed high-symmetry points. We take advantage of this peculiar feature to demonstrate the possibility of moving the Dirac bands along the Γ-M symmetry line in reciprocal space by varying the concentration of K atoms adsorbed onto the surface of cleaved BaNiS2 single crystals. By means of first-principles calculations, we give a full account of this observation by considering the effect of the electrons donated by the K atom on the charge transfer gap, which establishes a promising tool for engineering Dirac states at surfaces, interfaces, and heterostructures.

2.
Proc Natl Acad Sci U S A ; 117(46): 28596-28602, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33122434

RESUMEN

Interaction effects can change materials properties in intriguing ways, and they have, in general, a huge impact on electronic spectra. In particular, satellites in photoemission spectra are pure many-body effects, and their study is of increasing interest in both experiment and theory. However, the intrinsic spectral function is only a part of a measured spectrum, and it is notoriously difficult to extract this information, even for simple metals. Our joint experimental and theoretical study of the prototypical simple metal aluminum demonstrates how intrinsic satellite spectra can be extracted from measured data using angular resolution in photoemission. A nondispersing satellite is detected and explained by electron-electron interactions and the thermal motion of the atoms. Additional nondispersing intensity comes from the inelastic scattering of the outgoing photoelectron. The ideal intrinsic spectral function, instead, has satellites that disperse both in energy and in shape. Theory and the information extracted from experiment describe these features with very good agreement.

3.
Nanotechnology ; 33(9)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34814126

RESUMEN

This work reports on the electron-induced modification of NaCl thin film grown on Ag(110). We show using low energy electron diffraction that electron beam bombardment leads to desorption and formation of Cl vacancy defects on NaCl surface. The topographic structure of these defects is studied using scanning tunneling microscopy (STM) showing the Cl defects as depressions on the NaCl surface. Most of the observed defects are mono-atomic vacancies and are located on flat NaCl terraces. Auger electron spectroscopy confirms the effect of electron exposure on NaCl thin films showing Cl atoms desorption from the surface. Using density functional theory taken into account the van der Waals dispersion interactions, we confirm the observed experimental STM measurements with STM simulation. Furthermore, comparing the adsorption of defect free NaCl and defective NaCl monolayer on Ag(110) surfaces, we found an increase of the adhesion energy and the charge transfer between the NaCl film and the substrate due to the Cl vacancy. In details, the adhesion energy increases between the NaCl film and the metallic Ag substrate from 30.4 meV Å-2for the NaCl film without Cl vacancy and from 39.5 meV Å-2for NaCl film with a single Cl vacancy. The charge transfer from the NaCl film to the Ag substrate is enhanced when the vacancy is created, from 0.63e-to 1.25e-.

4.
Nanotechnology ; 31(49): 495602, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-32975225

RESUMEN

The synthesis of blue phosphorene by molecular beam epitaxy (MBE) has recently come under the spotlight due to its potential applications in electronic and optoelectronic devices. However, this synthesis remains a significant challenge. The surface reactivity between the P atoms and the Au atoms should be considered for the P/Au(111) system. In the MBE process, the temperature of the substrate is a key parameter for the growth of blue phosphorene. During the initial growth stage, irregularly shaped Phosphorus clusters grow on top of Au(111) surface at room temperature. When the substrate temperature is increased, these clusters transform into a phosphorene-like structure with a honeycomb lattice. An atom exchange reaction is observed between the P and first layer Au atoms under thermal activation at higher temperature, where the P atoms replace Au atoms to form a blue phosphorene structure within the top Au layer and at the step edges.

5.
Small ; 14(51): e1804066, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30370995

RESUMEN

Phosphorene is a new 2D material composed of a single or few atomic layers of black phosphorus. Phosphorene has both an intrinsic tunable direct bandgap and high carrier mobility values, which make it suitable for a large variety of optical and electronic devices. However, the synthesis of single-layer phosphorene is a major challenge. The standard procedure to obtain phosphorene is by exfoliation. More recently, the epitaxial growth of single-layer phosphorene on Au(111) was investigated by molecular beam epitaxy and the obtained structure described as a blue phosphorene sheet. In the present study, large areas of high-quality monolayer phosphorene, with a bandgap value equal to at least 0.8 eV, are synthesized on Au(111). The experimental investigations, coupled with density functional theory calculations, give evidence of two distinct phases of blue phosphorene on Au(111), instead of one as previously reported, and their atomic structures are determined.

6.
J Chem Phys ; 143(10): 104702, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26374051

RESUMEN

Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur at an adsorption site can be interpreted alternatively as due to atomic adsorption of a S atom, resulting from dissociation. Results of an investigation of the characteristics of thiol self-assembled monolayers (SAMs) obtained by vacuum evaporative adsorption are presented along with core level binding energy calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) obtained by evaporation on Au display an unconventional CLBE structure at about 161.25 eV, which is close to a known CLBE of a S atom on Au. Adsorption and CLBE calculations for sulfur atoms and BDMT molecules are reported and allow delineating trends as a function of chemisorption on hollow, bridge, and atop sites and including the presence of adatoms. These calculations suggest that the 161.25 eV peak is due to an alternative adsorption site, which could be associated to an atop configuration. Therefore, this may be an alternative interpretation, different from the one involving the adsorption of atomic sulfur resulting from the dissociation process of the S-C bond. Calculated differences in S(2p) CLBEs for free BDMT molecules, SH group sulfur on top of the SAM, and disulfide are also reported to clarify possible errors in assignments.

7.
Anal Bioanal Chem ; 405(27): 8739-48, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23990011

RESUMEN

Organic compounds have been extracted from calcium carbonate skeletons produced by three invertebrate species belonging to distinct phyla. The soluble parts of these skeleton matrices were isolated and analysed by synchrotron-based X-ray spectroscopy (XPS). The presence of calcium associated with these organic materials was revealed in every sample studied, with important variations in Ca 2p binding energy from species to species. Measured Ca 2p binding energy values are more related to compositional diversity of the mineralizing matrices of the skeletons, whose taxonomic dependence has long been established, than to the Ca carbonate polymorph selected to build the skeletal units. This suggests a physical bond between species-specific mineralizing organic assemblages and the associated calcium. Remarkably, the binding energy of 2p electrons in calcium associated with mineralizing matrices is consistently higher than Ca 2p values obtained in purely mineral carbonate (both calcite and aragonite). The ability both to identify and measure the effect of organic matrices on their mineral counterpart in calcareous biominerals opens a new perspective for a functional approach to the biomineralization process.


Asunto(s)
Exoesqueleto/química , Calcio/análisis , Electrones , Invertebrados/química , Espectroscopía de Fotoelectrones/métodos , Animales , Antozoos/química , Antozoos/fisiología , Bivalvos/química , Bivalvos/fisiología , Calcio/metabolismo , Invertebrados/fisiología , Espectroscopía de Fotoelectrones/instrumentación , Especificidad de la Especie , Sincrotrones , Termodinámica
8.
J Synchrotron Radiat ; 19(Pt 4): 570-3, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22713891

RESUMEN

Platinum is one of the most common coatings used to optimize mirror reflectivity in soft X-ray beamlines. Normal operation results in optics contamination by carbon-based molecules present in the residual vacuum of the beamlines. The reflectivity reduction induced by a carbon layer at the mirror surface is a major problem in synchrotron radiation sources. A time-dependent photoelectron spectroscopy study of the chemical reactions which take place at the Pt(111) surface under operating conditions is presented. It is shown that the carbon contamination layer growth can be stopped and reversed by low partial pressures of oxygen for optics operated in intense photon beams at liquid-nitrogen temperature. For mirrors operated at room temperature the carbon contamination observed for equivalent partial pressures of CO is reduced and the effects of oxygen are observed on a long time scale.

9.
Biosensors (Basel) ; 11(9)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34562901

RESUMEN

We report the design of an electrochemical aptasensor for ampicillin detection, which is an antibiotic widely used in agriculture and considered to be a water contaminant. We studied the transducing potential of nanostructure composed of MoS2 nanosheets and conductive polypyrrole nanoparticles (PPyNPs) cast on a screen-printed electrode. Fine chemistry is developed to build the biosensors entirely based on robust covalent immobilizations of naphthoquinone as a redox marker and the aptamer. The structural and morphological properties of the nanocomposite were studied by SEM, AFM, and FT-IR. High-resolution XPS measurements demonstrated the formation of a binding between the two nanomaterials and energy transfer affording the formation of heterostructure. Cyclic voltammetry and electrochemical impedance spectroscopy were used to analyze their electrocatalytic properties. We demonstrated that the nanocomposite formed with PPyNPs and MoS2 nanosheets has electro-catalytic properties and conductivity leading to a synergetic effect on the electrochemical redox process of the redox marker. Thus, a highly sensitive redox process was obtained that could follow the recognition process between the apatamer and the target. An amperometric variation of the naphthoquinone response was obtained regarding the ampicillin concentration with a limit of detection (LOD) of 10 pg/L (0.28 pM). A high selectivity towards other contaminants was demonstrated with this biosensor and the analysis of real river water samples without any treatment showed good recovery results thanks to the antifouling properties. This biosensor can be considered a promising device for the detection of antibiotics in the environment as a point-of-use system.


Asunto(s)
Ampicilina , Aptámeros de Nucleótidos , Monitoreo del Ambiente , Naftoquinonas , Contaminantes Químicos del Agua/análisis , Ampicilina/análisis , Técnicas Biosensibles , Técnicas Electroquímicas , Límite de Detección , Molibdeno , Nanocompuestos , Polímeros , Pirroles , Ríos/química , Espectroscopía Infrarroja por Transformada de Fourier , Transductores , Agua
10.
Nat Commun ; 12(1): 5160, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34453043

RESUMEN

The emergence of peculiar phenomena in 1D phosphorene chains (P chains) has been proposed in theoretical studies, notably the Stark and Seebeck effects, room temperature magnetism, and topological phase transitions. Attempts so far to fabricate P chains, using the top-down approach starting from a few layers of bulk black phosphorus, have failed to produce reliably precise control of P chains. We show that molecular beam epitaxy gives a controllable bottom-up approach to grow atomically thin, crystalline 1D flat P chains on a Ag(111) substrate. Scanning tunneling microscopy, angle-resolved photoemission spectroscopy, and density functional theory calculations reveal that the armchair-shaped chains are semiconducting with an intrinsic 1.80 ± 0.20 eV band gap. This could make these P chains an ideal material for opto-electronic devices.

11.
RSC Adv ; 10(51): 30934-30943, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516062

RESUMEN

This work relates to direct synthesis of the two-dimensional (2D) transition metal dichalchogenide (TMD) PtSe2 using an original method based on chemical deposition during immersion of a Pt(111) surface into aqueous Na2Se solution. Annealing of the sample induces significant modifications in the structural and electronic properties of the resulting PtSe2 film. We report systematic investigations of temperature dependent phase transitions by combining synchrotron based high-resolution X-ray photoemission (XPS), low temperature scanning tunnelling microscopy (LT-STM) and low energy electron diffraction (LEED). From the STM images, a phase transition from TMD 2H-PtSe2 to Pt2Se alloy monolayer structure is observed, in agreement with the LEED patterns showing a transition from (4 × 4) to (√3 × âˆš3)R30° and then to a (2 × 2) superstructure. This progressive evolution of the surface reconstruction has been monitored by XPS through systematic de-convolution of the Pt4f and Se3d core level peaks at different temperatures. The present work provides an alternative method for the large scale fabrication of 2D transition metal dichalchogenide films.

12.
Nanoscale Adv ; 2(6): 2309-2314, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-36133383

RESUMEN

We report on the oxidation of self-assembled silicene nanoribbons grown on the Ag (110) surface using scanning tunneling microscopy and high-resolution photoemission spectroscopy. The results show that silicene nanoribbons present a strong resistance towards oxidation using molecular oxygen. This can be overcome by increasing the electric field in the STM tunnel junction above a threshold of +2.6 V to induce oxygen dissociation and reaction. The higher reactivity of the silicene nanoribbons towards atomic oxygen is observed as expected. The HR-PES confirm these observations: even at high exposures of molecular oxygen, the Si 2p core-level peaks corresponding to pristine silicene remain dominant, reflecting a very low reactivity to molecular oxygen. Complete oxidation is obtained following exposure to high doses of atomic oxygen; the Si 2p core level peak corresponding to pristine silicene disappears.

13.
ACS Nano ; 13(11): 13486-13491, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31644265

RESUMEN

Manipulation of intrinsic electronic structures by electron or hole doping in a controlled manner in van der Waals layered materials is the key to control their electrical and optical properties. Two-dimensional indium selenide (InSe) semiconductor has attracted attention due to its direct band gap and ultrahigh mobility as a promising material for optoelectronic devices. In this work, we manipulate the electronic structure of InSe by in situ surface electron doping and obtain a significant band gap renormalization of ∼120 meV directly observed by high-resolution angle resolved photoemission spectroscopy. This moderate doping level (carrier concentration of 8.1 × 1012 cm-2) can be achieved by electrical gating in field effect transistors, demonstrating the potential to design of broad spectral response devices.

14.
Struct Dyn ; 5(3): 034501, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29888296

RESUMEN

We use time-resolved X-ray photoelectron spectroscopy to probe the electronic and magnetization dynamics in FeRh films after ultrafast laser excitations. We present experimental and theoretical results which investigate the electronic structure of FeRh during the first-order phase transition, identifying a clear signature of the magnetic phase. We find that a spin polarized feature at the Fermi edge is a fingerprint of the magnetic status of the system that is independent of the long-range ferromagnetic alignment of the magnetic domains. We use this feature to follow the phase transition induced by a laser pulse in a pump-probe experiment and find that the magnetic transition occurs in less than 50 ps and reaches its maximum in 100 ps.

15.
Sci Rep ; 7: 44400, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28281666

RESUMEN

The remarkable properties of graphene stem from its two-dimensional (2D) structure, with a linear dispersion of the electronic states at the corners of the Brillouin zone (BZ) forming a Dirac cone. Since then, other 2D materials have been suggested based on boron, silicon, germanium, phosphorus, tin, and metal di-chalcogenides. Here, we present an experimental investigation of a single silicon layer on Au(111) using low energy electron diffraction (LEED), high resolution angle-resolved photoemission spectroscopy (HR-ARPES), and scanning tunneling microscopy (STM). The HR-ARPES data show compelling evidence that the silicon based 2D overlayer is responsible for the observed linear dispersed feature in the valence band, with a Fermi velocity of comparable to that of graphene. The STM images show extended and homogeneous domains, offering a viable route to the fabrication of silicene-based opto-electronic devices.

16.
Sci Rep ; 7(1): 4120, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28646153

RESUMEN

Rashba spin-orbit splitting in the magnetic materials opens up a new perspective in the field of spintronics. Here, we report a giant Rashba spin-orbit splitting on the PrGe [010] surface in the paramagnetic phase with Rashba coefficient α R = 5 eVÅ. We find that α R can be tuned in this system as a function of temperature at different magnetic phases. Rashba type spin polarized surface states originates due to the strong hybridization between Pr 4f states with the conduction electrons. Significant changes observed in the spin polarized surface states across the magnetic transitions are due to the competition between Dzyaloshinsky-Moriya interaction and exchange interaction present in this system. Presence of Dzyaloshinsky-Moriya interaction on the topological surface give rise to Saddle point singularity which leads to electron-like and hole-like Rashba spin split bands in the [Formula: see text] and [Formula: see text] directions, respectively. Supporting evidences of Dzyaloshinsky-Moriya interaction have been obtained as anisotropic magnetoresistance with respect to field direction and first-order type hysteresis in the X-ray diffraction measurements. A giant negative magnetoresistance of 43% in the antiferromagnetic phase and tunable Rashba parameter with temperature makes this material a suitable candidate for application in the antiferromagnetic spintronic devices.

17.
Sci Rep ; 6: 22383, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26935274

RESUMEN

Interfaces and low dimensionality are sources of strong modifications of electronic, structural, and magnetic properties of materials. FeRh alloys are an excellent example because of the first-order phase transition taking place at ~400 K from an antiferromagnetic phase at room temperature to a high temperature ferromagnetic one. It is accompanied by a resistance change and volume expansion of about 1%. We have investigated the electronic and magnetic properties of FeRh(100) epitaxially grown on MgO by combining spectroscopies characterized by different probing depths, namely X-ray magnetic circular dichroism and photoelectron spectroscopy. We find that the symmetry breaking induced at the Rh-terminated surface stabilizes a surface ferromagnetic layer involving five planes of Fe and Rh atoms in the nominally antiferromagnetic phase at room temperature. First-principles calculations provide a microscopic description of the structural relaxation and the electron spin-density distribution that support the experimental findings.

18.
Beilstein J Nanotechnol ; 7: 263-277, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26977383

RESUMEN

This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon-chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon-chalcogen atom-bond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the π-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.

19.
J Phys Condens Matter ; 26(33): 335502, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25077518

RESUMEN

The occupied and the unoccupied electronic structure of CeAg2Ge2 single crystal has been studied using high resolution photoemission and inverse photoemission spectroscopy, respectively. High resolution photoemission reveals the clear signature of Ce 4f states in the occupied electronic structure which was not observed clearly in our earlier studies. The Coulomb correlation energy in this system has been determined experimentally from the position of the 4f states above and below the Fermi level. Theoretically, the correlation energy has been determined by using the first principles density functional calculations within the generalized gradient approximations taking into account the strong intra-atomic (on-site) interaction Hubbard Ueff term. The calculated valence band shows minor changes in the spectral shape with increasing Ueff due to the fact that the density of Ce 4f state is narrow in the occupied part and is hybridized with the Ce 5d, Ag 4d and Ge 4p states. On the other hand, substantial changes are observed in the spectral shape of the calculated conduction band with increasing Ueff since the density of Ce 4f state is very large in the unoccupied part, compared to other states. The estimated value of correlation energy for CeAg2Ge2 from the experiment and the theory is ≈ 4.2 eV. The resonant photoemission data are analyzed in the framework of the single-impurity Anderson model which further confirms the presence of the Coulomb correlation energy and small hybridization in this system.

20.
J Phys Condens Matter ; 25(44): 442001, 2013 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-24131870

RESUMEN

In this paper, we report the direct chemical synthesis of silicon sheets in gram-scale quantities by chemical exfoliation of pre-processed calcium disilicide (CaSi2). We have used a combination of x-ray photoelectron spectroscopy, transmission electron microscopy and energy-dispersive x-ray spectroscopy to characterize the obtained silicon sheets. We found that the clean and crystalline silicon sheets show a two-dimensional hexagonal graphitic structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA