Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Transfusion ; 64 Suppl 2: S27-S33, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38251751

RESUMEN

BACKGROUND: Whole blood (WB) collections can occur downrange for immediate administration. An important aspect of these collections is determining when the unit is sufficiently full. This project tested a novel method for determining when a field collection is complete. METHODS: The amount of empty space at the top of WB units, destined to become LTOWB or separated into components, that were collected at blood centers or hospitals was measured by holding a WB unit off the ground and placing the top of a piece of string where the donor tubing entered the bag. The string was marked where it intersected the top of the column of blood in the bag and measured from the top. The WB units were also weighed. RESULTS: A total of 15 different bags, two of which were measured in two different filling volumes, from 15 hospitals or blood centers were measured and weighed. The most commonly used blood bag, Terumo Imuflex SP, had a median string length of 9 mm (range: 2-24 mm) and weighed a median of 565.1 g (range: 524.8-636.7 g). CONCLUSION: Pieces of string can be precut to the appropriate length depending on the type of bag before a mission where field WB collections might be required and a mark placed on the bag before the collection commences to indicate when the unit is full.


Asunto(s)
Donantes de Sangre , Humanos , Bancos de Sangre , Recolección de Muestras de Sangre/métodos , Recolección de Muestras de Sangre/instrumentación
2.
Acta Anaesthesiol Scand ; 68(6): 812-820, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38453453

RESUMEN

BACKGROUND: Randomized controlled trials relatively consistently show that restrictive red blood cell (RBC) transfusion strategies are safe and associated with similar outcomes compared to liberal transfusion strategies in critically ill patients. Based on these data, the general threshold for RBC transfusion was changed to 70 g/L at a 9-bed tertiary level intensive care unit in September 2020. Implementation measures included lectures, webinars and feedback during clinical practice. The aim of this study was to investigate how implementation of a restrictive transfusion strategy influenced RBC usage, haemoglobin trigger levels and adherence to prescribed trigger levels. METHODS: In this registry-based, observational study, critically ill adult patients without massive bleeding were included and divided into a pre-cohort, with admissions prior to the change of transfusion strategy, and a post-cohort, with admissions following the change of transfusion strategy. These cohorts were compared regarding key RBC transfusion-related variables. RESULTS: In total 5626 admissions were included in the analyses (pre-cohort n = 4373, post-cohort n = 1253). The median volume (interquartile range, IQR) of RBC transfusions per 100 admission days, in the pre-cohort was 6120 (4110-8110) mL versus 3010 (2890-4970) mL in the post-cohort (p < .001). This corresponds to an estimated median saving of 1128 € per 100 admission days after a restrictive RBC transfusion strategy was implemented. In total, 26% of the admissions in the pre-cohort and 19% in the post-cohort (p < .001) received RBC transfusion(s) during days 0-10. Both median (IQR) prescribed trigger levels (determined by intensivist) and actual haemoglobin trigger levels (i.e., levels prior to actual administration of transfusion) were higher in the pre- versus post-cohort (90 [80-100] vs. 80 [72-90] g/L, p < .001 and 89 [82-96] g/L vs. 83 [79-94], p < .001, respectively). Percentage of days without compliance with the prescribed transfusion trigger was higher in the pre-cohort than in the post-cohort (23% vs. 14%, p < .001). Sensitivity analyses, excluding patients with traumatic brain injury, ischemic heart disease and COVID-19 demonstrated similar results. CONCLUSIONS: Implementation of a restrictive transfusion trigger in a critical care setting resulted in lasting decreased RBC transfusion use and costs, decreased prescribed and actual haemoglobin trigger levels and improved adherence to prescribed haemoglobin trigger levels.


Asunto(s)
Enfermedad Crítica , Transfusión de Eritrocitos , Adhesión a Directriz , Humanos , Transfusión de Eritrocitos/métodos , Enfermedad Crítica/terapia , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adhesión a Directriz/estadística & datos numéricos , Estudios de Cohortes , Hemoglobinas/análisis , Sistema de Registros , Unidades de Cuidados Intensivos
3.
Vox Sang ; 117(6): 822-830, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35262978

RESUMEN

BACKGROUND AND OBJECTIVES: The coronavirus disease 2019 (COVID-19) pandemic has impacted blood systems worldwide. Challenges included maintaining blood supplies and initiating the collection and use of COVID-19 convalescent plasma (CCP). Sharing information on the challenges can help improve blood collection and utilization. MATERIALS AND METHODS: A survey questionnaire was distributed to International Society of Blood Transfusion members in 95 countries. We recorded respondents' demographic information, impacts on the blood supply, CCP collection and use, transfusion demands and operational challenges. RESULTS: Eighty-two responses from 42 countries, including 24 low- and middle-income countries, were analysed. Participants worked in national (26.8%) and regional (26.8%) blood establishments and hospital-based (42.7%) institutions. CCP collection and transfusion were reported by 63% and 36.6% of respondents, respectively. Decreases in blood donations occurred in 70.6% of collecting facilities. Despite safety measures and recruitment strategies, donor fear and refusal of institutions to host blood drives were major contributing factors. Almost half of respondents working at transfusion medicine services were from large hospitals with over 10,000 red cell transfusions per year, and 76.8% of those hospitals experienced blood shortages. Practices varied in accepting donors for blood or CCP donations after a history of COVID-19 infection, CCP transfusion, or vaccination. Operational challenges included loss of staff, increased workloads and delays in reagent supplies. Almost half of the institutions modified their disaster plans during the pandemic. CONCLUSION: The challenges faced by blood systems during the COVID-19 pandemic highlight the need for guidance, harmonization, and strengthening of the preparedness and the capacity of blood systems against future infectious threats.


Asunto(s)
COVID-19 , Pandemias , Bancos de Sangre , Donantes de Sangre , Transfusión Sanguínea , COVID-19/epidemiología , COVID-19/terapia , Humanos , Inmunización Pasiva , Encuestas y Cuestionarios , Sueroterapia para COVID-19
8.
Transfus Med Rev ; 34(4): 270-276, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33039264

RESUMEN

Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a rare and potentially serious bleeding condition in the fetus/newborn. FNAIT is usually considered as the platelet counterpart of hemolytic disease of the fetus and newborn. In FNAIT, maternal alloantibodies against paternally inherited platelet antigens traverse the placenta and cause thrombocytopenia in the fetus/newborn. The most common and most serious cases of FNAIT among white people are caused by alloantibodies against the human platelet antigen 1a (HPA-1a), which is absent in 2.3% of women. Today, there is no screening for FNAIT, and for this reason, FNAIT is not suspected until an otherwise healthy child, born at term, presents with thrombocytopenia. Clinical management of subsequent pregnancies at risk of FNAIT is mostly based on the obstetric history. During the last 5 decades, hemolytic disease of the fetus and newborn caused by antibodies against RhD has successfully been prevented by administration of hyperimmune anti-D IgG drug products to RhD-negative women after delivery of an RhD-positive child. Similarly, a hyperimmune anti-HPA-1a IgG (NAITgam) is under development for the prevention of HPA-1a immunization and FNAIT. If NAITgam becomes licensed for FNAIT prophylaxis and national health authorities decide to include FNAIT screening in their antenatal health care programs, it will be necessary to improve today's tools for assessing the risk of FNAIT. Although the primary risk factor for HPA-1a immunization is platelet type HPA-1bb, not all HPA-1a-negative women develop anti-HPA-1a. The women who are HLA-DRB3:01:01 negative (72%) only rarely develop anti-HPA-1a, and for those few who become HPA-1a immunized, it is quite rare to have a child with severe thrombocytopenia. Determination of fetal HPA-1 type is important because 15% of HPA-1a-negative women will carry an HPA-1a-negative fetus and therefore not be at risk of FNAIT. The severity of FNAIT seems to be associated with the level of anti-HPA-1a. Hence, in Norway, for example, an Ab threshold of 3 IU/mL is used to distinguish between low- and high-risk pregnancies. The current review will discuss to what extent these analyses, as well as determination of subtypes of anti-HPA-1a (anti-ß3, anti-αIIbß3, and anti-αvß3) and Fc core fucosylation of anti-HPA-1a IgG, can be used as risk stratification tools.


Asunto(s)
Antígenos de Plaqueta Humana/inmunología , Cadenas HLA-DRB3/inmunología , Integrina beta3/inmunología , Isoanticuerpos/sangre , Atención Prenatal/métodos , Trombocitopenia Neonatal Aloinmune/diagnóstico , Trombocitopenia Neonatal Aloinmune/inmunología , Biomarcadores/sangre , Femenino , Humanos , Recién Nacido , Embarazo , Medición de Riesgo , Trombocitopenia Neonatal Aloinmune/sangre , Trombocitopenia Neonatal Aloinmune/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA