Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biology (Basel) ; 13(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38534412

RESUMEN

Gnomoniopsis castaneae is responsible for brown or chalky nut rot in sweet chestnut (Castanea sativa), causing heavy reductions in nut production. Controlling it is challenging, due to its inconspicuous infections, erratic colonization of host tissues and endophytic lifestyle. Fungicides are not applicable because they are prohibited in chestnut forests and strongly discouraged in fruit chestnut groves. Trichoderma species are safe and wide-spectrum biocontrol agents (BCAs), with a variety of beneficial effects in plant protection. This study tested selected strains of T. viride, T. harzianum and T. atroviride for their ability to suppress G. castaneae. Field experiments were conducted in four chestnut groves (two test plots plus two controls) at two sites with a different microclimate. As the size of the trees were a major drawback for uniform and effective treatments, the Trichoderma strains were delivered directly by trunk injection, using the BITE® (Blade for Infusion in TrEes) endotherapic tool. The BCA application, repeated twice in two subsequent years, significantly reduced nut rot incidence, with a more marked, presumably cumulative, effect in the second year. Our data showed the tested Trichoderma strains retain great potential for the biological control of G. castaneae in chestnut groves. The exploitation of Trichoderma spp. as biopesticides is a novelty in the forestry sector and proves the benefits of these microbes in plant disease protection.

2.
Pathogens ; 12(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36839436

RESUMEN

Thousand cankers disease (TCD) is a new deadly disease in walnut trees (Juglans spp.), which is plaguing commercial plantations, natural groves, and ornamental black walnut trees (Juglans nigra) in their native and invasion areas in the US and, more recently, in artificial plantations and amenity trees in the newly-invaded areas in Europe (Italy). This insect/fungus complex arises from the intense trophic activity of the bark beetle vector Pityophthorus juglandis in the phloem of Juglans spp. and the subsequent development of multiple Geosmithia morbida cankers around beetles' entry/exit holes. After an analysis of the main biological and ecological traits of both members of this insect/fungus complex, this review explores the options available for TCD prevention and management. Special focus is given to those diagnostic tools developed for disease detection, surveillance, and monitoring, as well as to existing phytosanitary regulations, protocols, and measures that comply with TCD eradication and containment. Only integrated disease management can effectively curtail the pervasive spread of TCD, thus limiting the damage to natural ecosystems, plantations, and ornamental walnuts.

3.
Plants (Basel) ; 11(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35567240

RESUMEN

Walnut species (Juglans spp.) are multipurpose trees, widely employed in plantation forestry for high-quality timber and nut production, as well as in urban greening as ornamental plants. These species are currently threatened by the thousand cankers disease (TCD) complex, an insect-fungus association which involves the ascomycete Geosmithia morbida (GM) and its vector, the bark beetle Pityophthorus juglandis. While TCD has been studied extensively where it originated in North America, little research has been carried out in Europe, where it was more recently introduced. A key step in research to cope with this new phytosanitary emergency is the development of effective molecular detection tools. In this work, we report two accurate molecular methods for the diagnosis of GM, based on LAMP (real-time and visual) and SYBR Green qPCR, which are complimentary to and integrated with similar recently developed assays. Our protocols detected GM DNA from pure mycelium and from infected woody tissue with high accuracy, sensitivity, and specificity, without cross-reactivity to a large panel of taxonomically related species. The precision and robustness of our tests guarantee high diagnostic standards and could be used to support field diagnostic end-users in TCD monitoring and surveillance campaigns.

4.
J Fungi (Basel) ; 7(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34436156

RESUMEN

Melampsoridium hiratsukanum is an alien rust fungus which has spread pervasively throughout several European countries following introduction into North Europe at the end of the 20th century. The authenticity of several records of the Melampsoridium species infecting alder (Alnus spp.) in the northern hemisphere is questionable, due to the misidentification and confusion that surround many of the older reports. Given this complicated taxonomic history, and since a M. hiratsukanum-like rust is strongly impacting Alnus incana stands in the Alps, probably affecting the bank protection role of this species along rivers, the unambiguous identification of this pathogen was a pressing epidemiological and ecological issue. In this study, field surveys, light (LM) and scanning electron microscopy (SEM), and molecular characterization were put together in an attempt to solve the conundrum. Field monitoring data, LM and SEM analyses of key taxonomic traits (length of ostiolar cells of uredinium, uredinio-spore shape and size, spore echinulation, number and position of germ pores) and ITS-rDNA sequence-based identification, convergently and unambiguously connected the rust that is causing the current epidemic to the non-native M. hiratsukanum. We documented the completion of the M. hiratsukanum life cycle on its two taxonomically unrelated broadleaf/conifer hosts. This is the first report of M. hiratsukanum from naturally infected Larix decidua in Europe.

5.
Plants (Basel) ; 10(6)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067342

RESUMEN

The walnut twig beetle Pityophthorus juglandis is a phloem-boring bark beetle responsible, in association with the ascomycete Geosmithia morbida, for the Thousand Cankers Disease (TCD) of walnut trees. The recent finding of TCD in Europe prompted the development of effective diagnostic protocols for the early detection of members of this insect/fungus complex. Here we report the development of a highly efficient, low-cost, and rapid method for detecting the beetle, or even just its biological traces, from environmental samples: the loop-mediated isothermal amplification (LAMP) assay. The method, designed on the 28S ribosomal RNA gene, showed high specificity and sensitivity, with no cross reactivity to other bark beetles and wood-boring insects. The test was successful even with very small amounts of the target insect's nucleic acid, with limit values of 0.64 pg/µL and 3.2 pg/µL for WTB adults and frass, respectively. A comparison of the method (both in real time and visual) with conventional PCR did not display significant differences in terms of LoD. This LAMP protocol will enable quick, low-cost, and early detection of P. juglandis in areas with new infestations and for phytosanitary inspections at vulnerable sites (e.g., seaports, airports, loading stations, storage facilities, and wood processing companies).

6.
MethodsX ; 7: 101174, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33318964

RESUMEN

Lindgren funnel traps were used to monitor Pityophthorus juglandis occurrence. Traps were placed directly on walnut trees, with the top tied to one of the lower branches (about 2m high). An 8-funnel model was used instead of a 4-funnel trap, with the specific pheromone bait positioned between the fourth and the fifth funnel. Traps were customized with a 5mm metal mesh which was placed inside the bottom funnel so that debris (mainly foliage) and larger non-target insects would not end up inside the collecting jar. Geosmithia morbida was isolated from beetle adults, larvae and necrotic woody tissue around beetle galleries. Contaminant-free colonies were subcultured in purity and identified by: a) colony phenotyping [morphology, texture and pigmentation; margin type (regular/irregular; lobed/non-lobed); mycelium compactness; surface bumpiness; growth/temperature relationships]; b) micromorphology: type, morphology and ontogeny of conidiophores, metulae and phialides; conidiogenesis; shape, dimension and pigmentation of conidia; c) DNA fingerprinting.•Our protocol was customized to prevent traps from swinging in the wind and to optimize beetle catches by transversely fixing the bottom of funnel traps to the tree trunk with wooden shafts for stability.•To enhance fungus isolation in purity, a semi-selective Potato Dextrose Agar (PDA) medium, enriched with the antibiotics Ampicillin (Policillin-N) and Rifampicin (Rifamycin), was devised to prevent contamination by Gram-positive and Gram-negative bacteria and by mycobacteria.

7.
PLoS One ; 15(10): e0241109, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33095845

RESUMEN

The cultivation of walnuts (Juglans sp.) in Europe retains high economic, social, and environmental value. The recent reporting of the Thousand Cankers Disease (TCD) fungus, Geosmithia morbida, and of its vector, Pityophthorus juglandis, in walnut trees in Italy is alarming the whole of Europe. Although Italy is at present the only foothold of the disease outside North America, given the difficulties inherent in traditional identification of both members of this beetle/fungus complex, a rapid and effective protocol for the early detection and identification of TCD organisms is an absolute priority for Europe. Here we report the development of an effective and sensitive molecular tool based on simplex/duplex qPCR assays for the rapid, accurate and highly specific detection of both the bionectriaceous fungal pathogen and its bark-beetle vector. Our assay performed excellently, detecting minute amounts of target DNA without any non-specific amplification. Detection limits from various and heterogeneous matrices were lower than other reported assays. Our molecular protocol could assist in TCD organism interception at entry points, territory monitoring for the early identification and eradication of outbreaks, delineation of quarantine areas, and tracing back TCD entry and dispersal pathways.


Asunto(s)
ADN Ambiental/aislamiento & purificación , Hypocreales/genética , Juglans/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Gorgojos/genética , Animales , ADN Ambiental/genética , ADN de Hongos/aislamiento & purificación , Insectos Vectores/genética , Insectos Vectores/microbiología , Italia , Límite de Detección , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Reproducibilidad de los Resultados , Gorgojos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA