Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(7): e26697, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726888

RESUMEN

Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency, ω $$ \omega $$ , in addition to the diffusion tensor, D $$ \mathbf{D} $$ , and relaxation, R 1 $$ {R}_1 $$ , R 2 $$ {R}_2 $$ , correlations. A D ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on their D ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Humanos , Adulto , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Masculino , Femenino , Imagen de Difusión Tensora/métodos , Adulto Joven
2.
Magn Reson Med ; 91(6): 2431-2442, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38368618

RESUMEN

PURPOSE: We report the design concept and fabrication of MRI phantoms, containing blocks of aligned microcapillaires that can be stacked into larger arrays to construct diameter distribution phantoms or fractured, to create a "powder-averaged" emulsion of randomly oriented blocks for vetting or calibrating advanced MRI methods, that is, diffusion tensor imaging, AxCaliber MRI, MAP-MRI, and multiple pulsed field gradient or double diffusion-encoded microstructure imaging methods. The goal was to create a susceptibility-matched microscopically anisotropic but macroscopically isotropic phantom with a ground truth diameter that could be used to vet advanced diffusion methods for diameter determination in fibrous tissues. METHODS: Two-photon polymerization, a novel three-dimensional printing method is used to fabricate blocks of capillaries. Double diffusion encoding methods were employed and analyzed to estimate the expected MRI diameter. RESULTS: Susceptibility-matched microcapillary blocks or modules that can be assembled into large-scale MRI phantoms have been fabricated and measured using advanced diffusion methods, resulting in microscopic anisotropy and random orientation. CONCLUSION: This phantom can vet and calibrate various advanced MRI methods and multiple pulsed field gradient or diffusion-encoded microstructure imaging methods. We demonstrated that two double diffusion encoding methods underestimated the ground truth diameter.


Asunto(s)
Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Capilares , Fantasmas de Imagen , Anisotropía , Impresión Tridimensional , Imagen de Difusión por Resonancia Magnética/métodos
3.
Brain ; 146(3): 1212-1226, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35953450

RESUMEN

There are currently no non-invasive imaging methods available for astrogliosis assessment or mapping in the central nervous system despite its essential role in the response to many disease states, such as infarcts, neurodegenerative conditions, traumatic brain injury and infection. Multidimensional MRI is an increasingly employed imaging modality that maximizes the amount of encoded chemical and microstructural information by probing relaxation (T1 and T2) and diffusion mechanisms simultaneously. Here, we harness the exquisite sensitivity of this imagining modality to derive a signature of astrogliosis and disentangle it from normative brain at the individual level using machine learning. We investigated ex vivo cerebral cortical tissue specimens derived from seven subjects who sustained blast-induced injuries, which resulted in scar-border forming astrogliosis without being accompanied by other types of neuropathological abnormality, and from seven control brain donors. By performing a combined post-mortem radiology and histopathology correlation study we found that astrogliosis induces microstructural and chemical changes that are robustly detected with multidimensional MRI, and which can be attributed to astrogliosis because no axonal damage, demyelination or tauopathy were histologically observed in any of the cases in the study. Importantly, we showed that no one-dimensional T1, T2 or diffusion MRI measurement can disentangle the microscopic alterations caused by this neuropathology. Based on these findings, we developed a within-subject anomaly detection procedure that generates MRI-based astrogliosis biomarker maps ex vivo, which were significantly and strongly correlated with co-registered histological images of increased glial fibrillary acidic protein deposition (r = 0.856, P < 0.0001; r = 0.789, P < 0.0001; r = 0.793, P < 0.0001, for diffusion-T2, diffusion-T1 and T1-T2 multidimensional data sets, respectively). Our findings elucidate the underpinning of MRI signal response from astrogliosis, and the demonstrated high spatial sensitivity and specificity in detecting reactive astrocytes at the individual level, and if reproduced in vivo, will significantly impact neuroimaging studies of injury, disease, repair and aging, in which astrogliosis has so far been an invisible process radiologically.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Gliosis , Humanos , Gliosis/patología , Astrocitos/metabolismo , Encéfalo/patología , Imagen por Resonancia Magnética , Lesiones Traumáticas del Encéfalo/complicaciones , Proteína Ácida Fibrilar de la Glía/metabolismo
4.
Brain ; 144(3): 800-816, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33739417

RESUMEN

Axonal injury is a major contributor to the clinical symptomatology in patients with traumatic brain injury. Conventional neuroradiological tools, such as CT and MRI, are insensitive to diffuse axonal injury (DAI) caused by trauma. Diffusion tensor MRI parameters may change in DAI lesions; however, the nature of these changes is inconsistent. Multidimensional MRI is an emerging approach that combines T1, T2, and diffusion, and replaces voxel-averaged values with distributions, which allows selective isolation of specific potential abnormal components. By performing a combined post-mortem multidimensional MRI and histopathology study, we aimed to investigate T1-T2-diffusion changes linked to DAI and to define their histopathological correlates. Corpora callosa derived from eight subjects who had sustained traumatic brain injury, and three control brain donors underwent post-mortem ex vivo MRI at 7 T. Multidimensional, diffusion tensor, and quantitative T1 and T2 MRI data were acquired and processed. Following MRI acquisition, slices from the same tissue were tested for amyloid precursor protein (APP) immunoreactivity to define DAI severity. A robust image co-registration method was applied to accurately match MRI-derived parameters and histopathology, after which 12 regions of interest per tissue block were selected based on APP density, but blind to MRI. We identified abnormal multidimensional T1-T2, diffusion-T2, and diffusion-T1 components that are strongly associated with DAI and used them to generate axonal injury images. We found that compared to control white matter, mild and severe DAI lesions contained significantly larger abnormal T1-T2 component (P = 0.005 and P < 0.001, respectively), and significantly larger abnormal diffusion-T2 component (P = 0.005 and P < 0.001, respectively). Furthermore, within patients with traumatic brain injury the multidimensional MRI biomarkers differentiated normal-appearing white matter from mild and severe DAI lesions, with significantly larger abnormal T1-T2 and diffusion-T2 components (P = 0.003 and P < 0.001, respectively, for T1-T2; P = 0.022 and P < 0.001, respectively, for diffusion-T2). Conversely, none of the conventional quantitative MRI parameters were able to differentiate lesions and normal-appearing white matter. Lastly, we found that the abnormal T1-T2, diffusion-T1, and diffusion-T2 components and their axonal damage images were strongly correlated with quantitative APP staining (r = 0.876, P < 0.001; r = 0.727, P < 0.001; and r = 0.743, P < 0.001, respectively), while producing negligible intensities in grey matter and in normal-appearing white matter. These results suggest that multidimensional MRI may provide non-invasive biomarkers for detection of DAI, which is the pathological substrate for neurological disorders ranging from concussion to severe traumatic brain injury.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/patología , Lesión Axonal Difusa/diagnóstico por imagen , Lesión Axonal Difusa/patología , Neuroimagen/métodos , Adulto , Anciano , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
5.
Neuroimage ; 243: 118530, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34464739

RESUMEN

The first phase of the Human Connectome Project pioneered advances in MRI technology for mapping the macroscopic structural connections of the living human brain through the engineering of a whole-body human MRI scanner equipped with maximum gradient strength of 300 mT/m, the highest ever achieved for human imaging. While this instrument has made important contributions to the understanding of macroscale connectional topology, it has also demonstrated the potential of dedicated high-gradient performance scanners to provide unparalleled in vivo assessment of neural tissue microstructure. Building on the initial groundwork laid by the original Connectome scanner, we have now embarked on an international, multi-site effort to build the next-generation human 3T Connectome scanner (Connectome 2.0) optimized for the study of neural tissue microstructure and connectional anatomy across multiple length scales. In order to maximize the resolution of this in vivo microscope for studies of the living human brain, we will push the diffusion resolution limit to unprecedented levels by (1) nearly doubling the current maximum gradient strength from 300 mT/m to 500 mT/m and tripling the maximum slew rate from 200 T/m/s to 600 T/m/s through the design of a one-of-a-kind head gradient coil optimized to minimize peripheral nerve stimulation; (2) developing high-sensitivity multi-channel radiofrequency receive coils for in vivo and ex vivo human brain imaging; (3) incorporating dynamic field monitoring to minimize image distortions and artifacts; (4) developing new pulse sequences to integrate the strongest diffusion encoding and highest spatial resolution ever achieved in the living human brain; and (5) calibrating the measurements obtained from this next-generation instrument through systematic validation of diffusion microstructural metrics in high-fidelity phantoms and ex vivo brain tissue at progressively finer scales with accompanying diffusion simulations in histology-based micro-geometries. We envision creating the ultimate diffusion MRI instrument capable of capturing the complex multi-scale organization of the living human brain - from the microscopic scale needed to probe cellular geometry, heterogeneity and plasticity, to the mesoscopic scale for quantifying the distinctions in cortical structure and connectivity that define cyto- and myeloarchitectonic boundaries, to improvements in estimates of macroscopic connectivity.


Asunto(s)
Conectoma/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Masculino , Neuroimagen/métodos , Fantasmas de Imagen
6.
Magn Reson Med ; 86(6): 2987-3011, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34411331

RESUMEN

Microstructure imaging seeks to noninvasively measure and map microscopic tissue features by pairing mathematical modeling with tailored MRI protocols. This article reviews an emerging paradigm that has the potential to provide a more detailed assessment of tissue microstructure-combined diffusion-relaxometry imaging. Combined diffusion-relaxometry acquisitions vary multiple MR contrast encodings-such as b-value, gradient direction, inversion time, and echo time-in a multidimensional acquisition space. When paired with suitable analysis techniques, this enables quantification of correlations and coupling between multiple MR parameters-such as diffusivity, T1 , T2 , and T2∗ . This opens the possibility of disentangling multiple tissue compartments (within voxels) that are indistinguishable with single-contrast scans, enabling a new generation of microstructural maps with improved biological sensitivity and specificity.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Difusión , Imagen por Resonancia Magnética , Modelos Teóricos
7.
Neuroimage ; 221: 117195, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32726643

RESUMEN

We describe a practical two-dimensional (2D) diffusion MRI framework to deliver specificity and improve sensitivity to axonal injury in the spinal cord. This approach provides intravoxel distributions of correlations of water mobilities in orthogonal directions, revealing sub-voxel diffusion components. Here we use it to investigate water diffusivities along axial and radial orientations within spinal cord specimens with confirmed, tract-specific axonal injury. First, we show using transmission electron microscopy and immunohistochemistry that tract-specific axonal beading occurs following Wallerian degeneration in the cortico-spinal tract as direct sequelae to closed head injury. We demonstrate that although some voxel-averaged diffusion tensor imaging (DTI) metrics are sensitive to this axonal injury, they are non-specific, i.e., they do not reveal an underlying biophysical mechanism of injury. Then we employ 2D diffusion correlation imaging (DCI) to improve discrimination of different water microenvironments by measuring and mapping the joint water mobility distributions perpendicular and parallel to the spinal cord axis. We determine six distinct diffusion spectral components that differ according to their microscopic anisotropy and mobility. We show that at the injury site a highly anisotropic diffusion component completely disappears and instead becomes more isotropic. Based on these findings, an injury-specific MR image of the spinal cord was generated, and a radiological-pathological correlation with histological silver staining % area was performed. The resulting strong and significant correlation (r=0.70,p < 0.0001) indicates the high specificity with which DCI detects injury-induced tissue alterations. We predict that the ability to selectively image microstructural changes following axonal injury in the spinal cord can be useful in clinical and research applications by enabling specific detection and increased sensitivity to injury-induced microstructural alterations. These results also encourage us to translate DCI to higher spatial dimensions to enable assessment of traumatic axonal injury, and possibly other diseases and disorders in the brain.


Asunto(s)
Axones/patología , Médula Cervical/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Traumatismos Cerrados de la Cabeza/complicaciones , Neuroimagen/métodos , Tractos Piramidales/diagnóstico por imagen , Degeneración Walleriana/diagnóstico por imagen , Animales , Médula Cervical/patología , Tomografía con Microscopio Electrónico , Hurones , Inmunohistoquímica , Masculino , Tractos Piramidales/patología , Sensibilidad y Especificidad , Degeneración Walleriana/etiología , Degeneración Walleriana/patología
8.
NMR Biomed ; 33(12): e4226, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31909516

RESUMEN

Multidimensional correlation spectroscopy is emerging as a novel MRI modality that is well suited for microstructure and microdynamic imaging studies, especially of biological specimens. Conventional MRI methods only provide voxel-averaged and mostly macroscopically averaged information; these methods cannot disentangle intra-voxel heterogeneity on the basis of both water mobility and local chemical interactions. By correlating multiple MR contrast mechanisms and processing the data in an integrated manner, correlation spectroscopy is able to resolve the distribution of water populations according to their chemical and physical interactions with the environment. The use of a non-parametric, phenomenological representation of the multidimensional MR signal makes no assumptions about tissue structure, thereby allowing the study of microscopic structure and composition of complex heterogeneous biological systems. However, until recently, vast data requirements have confined these types of measurement to non-localized NMR applications and prevented them from being widely and successfully used in conjunction with imaging. Recent groundbreaking advancements have allowed this powerful NMR methodology to be migrated to MRI, initiating its emergence as a promising imaging approach. This review is not intended to cover the entire field of multidimensional MR; instead, it focuses on pioneering imaging applications and the challenges involved. In addition, the background and motivation that have led to multidimensional correlation MR development are discussed, along with the basic underlying mathematical concepts. The goal of the present work is to provide the reader with a fundamental understanding of the techniques developed and their potential benefits, and to provide guidance to help refine future applications of this technology.


Asunto(s)
Imagen por Resonancia Magnética , Algoritmos , Animales , Espectroscopía de Resonancia Magnética , Ratas , Investigación Biomédica Traslacional , Nervio Trigémino/diagnóstico por imagen
9.
Microporous Mesoporous Mater ; 269: 93-96, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30220874

RESUMEN

Multidimensional relaxation-diffusion correlation (REDCO) NMR is an assumption-free method that measures how water is distributed within materials. Although highly informative, REDCO had never been used in clinical MRI applications because of the large amount of data it requires, leading to infeasible scan times. A recently suggested novel experimental design and processing framework, marginal distributions constrained optimization (MADCO), was used here to accelerate and improve the reconstruction of such MRI correlations. MADCO uses the 1D marginal distributions as a priori information, which provide powerful constraints when 2D spectra are reconstructed, while their estimation requires an order of magnitude less data than conventional 2D approaches. In this work we experimentally examined the impact the complexity of the correlation distribution has on the accuracy and robustness of the estimates. MADCO and a conventional method were compared using two T1-D phantoms that differ in the proximity of their peaks, leading to a relatively simple case as opposed to a more challenging one. The phantoms were used to vet the achievable data compression using MADCO under these conditions. MADCO required ~43 and ~30 less data than the conventional approach for the simple and complex spectra, respectively, making it potentially feasible for preclinical and even clinical applications.

10.
Microporous Mesoporous Mater ; 269: 156-159, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30337835

RESUMEN

Double pulsed-field gradient (dPFG) MRI is proposed as a new sensitive tool to detect and characterize tissue microstructure following diffuse axonal injury. In this study dPFG MRI was used to estimate apparent mean axon diameter in a diffuse axonal injury animal model and in healthy fixed mouse brain. Histological analysis was used to verify the presence of the injury detected by MRI.

11.
Neuroimage ; 163: 183-196, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28943412

RESUMEN

Magnetic resonance imaging (MRI) provides a powerful set of tools with which to investigate biological tissues noninvasively and in vivo. Tissues are heterogeneous in nature; an imaging voxel contains an ensemble of different cells and extracellular matrix components. A long-standing challenge has been to infer the content of and interactions among these microscopic tissue components within a macroscopic imaging voxel. Spatially resolved multidimensional relaxation-diffusion correlation (REDCO) spectroscopy holds the potential to deliver such microdynamic information. However, to date, vast data requirements have mostly relegated these type of measurements to nuclear magnetic resonance applications and prevented them from being widely and successfully used in conjunction with imaging. By using a novel data acquisition and processing strategy in this study, spatially resolved REDCO could be performed in reasonable scanning times with excellent prospects for clinical applications. This new MR imaging framework-which we term "magnetic resonance microdynamic imaging (MRMI)"-permits the simultaneous noninvasive and model-free quantification of multiple subcellular, cellular, and interstitial tissue microenvironments within a voxel. MRMI is demonstrated with a fixed spinal cord specimen, enabling the quantification of microscopic tissue components with unprecedented specificity. Tissue components, such as axons, neuronal and glial soma, and myelin were identified on the basis of their multispectral signature within individual imaging voxels. These tissue elements could then be composed into images and be correlated with immunohistochemistry findings. MRMI provides novel image contrasts of tissue components and a new family of microdynamic biomarkers that could lead to new diagnostic imaging approaches to probe biological tissue alterations accompanied by pathological or developmental changes.


Asunto(s)
Microambiente Celular , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Médula Espinal/diagnóstico por imagen , Animales , Hurones , Espectroscopía de Resonancia Magnética/métodos , Masculino
12.
Phys Rev Lett ; 118(15): 158003, 2017 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-28452522

RESUMEN

The movement of water between microenvironments presents a central challenge in the physics of soft matter and porous media. Diffusion exchange spectroscopy (DEXSY) is a powerful 2D nuclear magnetic resonance method for measuring such exchange, yet it is rarely used because of its long scan time requirements. Moreover, it has never been combined with magnetic resonance imaging (MRI). Using probability theory, we vastly reduce the required data, making DEXSY MRI feasible for the first time. Experiments are performed on a composite nerve tissue phantom with restricted and free water-exchanging compartments.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Difusión , Neuronas , Fantasmas de Imagen , Porosidad , Agua/química
13.
Neuroimage ; 135: 333-44, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27126002

RESUMEN

We report the development of a double diffusion encoding (DDE) MRI method to estimate and map the axon diameter distribution (ADD) within an imaging volume. A variety of biological processes, ranging from development to disease and trauma, may lead to changes in the ADD in the central and peripheral nervous systems. Unlike previously proposed methods, this ADD experimental design and estimation framework employs a more general, nonparametric approach, without a priori assumptions about the underlying form of the ADD, making it suitable to analyze abnormal tissue. In the current study, this framework was used on an ex vivo ferret spinal cord, while emphasizing the way in which the ADD can be weighted by either the number or the volume of the axons. The different weightings, which result in different spatial contrasts, were considered throughout this work. DDE data were analyzed to derive spatially resolved maps of average axon diameter, ADD variance, and extra-axonal volume fraction, along with a novel sub-micron restricted structures map. The morphological information contained in these maps was then used to segment white matter into distinct domains by using a proposed k-means clustering algorithm with spatial contiguity and left-right symmetry constraints, resulting in identifiable white matter tracks. The method was validated by comparing histological measures to the estimated ADDs using a quantitative similarity metric, resulting in good agreement. With further acquisition acceleration and experimental parameters adjustments, this ADD estimation framework could be first used preclinically, and eventually clinically, enabling a wide range of neuroimaging applications for improved understanding of neurodegenerative pathologies and assessing microstructural changes resulting from trauma.


Asunto(s)
Algoritmos , Axones/ultraestructura , Imagen de Difusión Tensora/métodos , Interpretación de Imagen Asistida por Computador/métodos , Sustancia Blanca/citología , Sustancia Blanca/diagnóstico por imagen , Animales , Interpretación Estadística de Datos , Hurones , Aumento de la Imagen/métodos , Técnicas In Vitro , Masculino , Reconocimiento de Normas Patrones Automatizadas/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribuciones Estadísticas
14.
J Chem Phys ; 145(15): 154202, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27782473

RESUMEN

Previously, we showed that compressive or compressed sensing (CS) can be used to reduce significantly the data required to obtain 2D-NMR relaxation and diffusion spectra when they are sparse or well localized. In some cases, an order of magnitude fewer uniformly sampled data were required to reconstruct 2D-MR spectra of comparable quality. Nonetheless, this acceleration may still not be sufficient to make 2D-MR spectroscopy practicable for many important applications, such as studying time-varying exchange processes in swelling gels or drying paints, in living tissue in response to various biological or biochemical challenges, and particularly for in vivo MRI applications. A recently introduced framework, marginal distributions constrained optimization (MADCO), tremendously accelerates such 2D acquisitions by using a priori obtained 1D marginal distribution as powerful constraints when 2D spectra are reconstructed. Here we exploit one important intrinsic property of the 2D-MR relaxation exchange spectra: the fact that the 1D marginal distributions of each 2D-MR relaxation exchange spectrum in both dimensions are equal and can be rapidly estimated from a single Carr-Purcell-Meiboom-Gill (CPMG) or inversion recovery prepared CPMG measurement. We extend the MADCO framework by further proposing to use the 1D marginal distributions to inform the subsequent 2D data-sampling scheme, concentrating measurements where spectral peaks are present and reducing them where they are not. In this way we achieve compression or acceleration that is an order of magnitude greater than that in our previous CS method while providing data in reconstructed 2D-MR spectral maps of comparable quality, demonstrated using several simulated and real 2D T2 - T2 experimental data. This method, which can be called "informed compressed sensing," is extendable to other 2D- and even ND-MR exchange spectroscopy.

15.
J Chem Phys ; 141(21): 214202, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25481136

RESUMEN

In this work, we present an experimental design and analytical framework to measure the nonparametric joint radius-length (R-L) distribution of an ensemble of parallel, finite cylindrical pores, and more generally, the eccentricity distribution of anisotropic pores. Employing a novel 3D double pulsed-field gradient acquisition scheme, we first obtain both the marginal radius and length distributions of a population of cylindrical pores and then use these to constrain and stabilize the estimate of the joint radius-length distribution. Using the marginal distributions as constraints allows the joint R-L distribution to be reconstructed from an underdetermined system (i.e., more variables than equations), which requires a relatively small and feasible number of MR acquisitions. Three simulated representative joint R-L distribution phantoms corrupted by different noise levels were reconstructed to demonstrate the process, using this new framework. As expected, the broader the peaks in the joint distribution, the less stable and more sensitive to noise the estimation of the marginal distributions. Nevertheless, the reconstruction of the joint distribution is remarkably robust to increases in noise level; we attribute this characteristic to the use of the marginal distributions as constraints. Axons are known to exhibit local compartment eccentricity variations upon injury; the extent of the variations depends on the severity of the injury. Nonparametric estimation of the eccentricity distribution of injured axonal tissue is of particular interest since generally one cannot assume a parametric distribution a priori. Reconstructing the eccentricity distribution may provide vital information about changes resulting from injury or that occurred during development.


Asunto(s)
Axones , Músculos , Anisotropía , Axones/ultraestructura , Difusión , Músculos/anatomía & histología , Porosidad
16.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260525

RESUMEN

Gray matter (GM) alterations play a role in aging-related disorders like Alzheimer's disease and related dementias, yet MRI studies mainly focus on macroscopic changes. Although reliable indicators of atrophy, morphological metrics like cortical thickness lack the sensitivity to detect early changes preceding visible atrophy. Our study aimed at exploring the potential of diffusion MRI in unveiling sensitive markers of cortical and subcortical age-related microstructural changes and assessing their associations with cognitive and behavioral deficits. We leveraged the Human Connectome Project-Aging cohort that included 707 unimpaired participants (394 female; median age = 58, range = 36-90 years) and applied the powerful mean apparent diffusion propagator model to measure microstructural parameters, along with comprehensive behavioral and cognitive test scores. Both macro- and microstructural GM characteristics were strongly associated with age, with widespread significant microstructural correlations reflective of cellular morphological changes, reduced cellular density, increased extracellular volume, and increased membrane permeability. Importantly, when correlating MRI and cognitive test scores, our findings revealed no link between macrostructural volumetric changes and neurobehavioral performance. However, we found that cellular and extracellular alterations in cortical and subcortical GM regions were associated with neurobehavioral performance. Based on these findings, it is hypothesized that increased microstructural heterogeneity and decreased neurite orientation dispersion precede macrostructural changes, and that they play an important role in subsequent cognitive decline. These alterations are suggested to be early markers of neurocognitive performance that may distinctly aid in identifying the mechanisms underlying phenotypic aging and subsequent age-related functional decline.

17.
Aging Cell ; 23(7): e14166, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38659245

RESUMEN

Gray matter (GM) alterations play a role in aging-related disorders like Alzheimer's disease and related dementias, yet MRI studies mainly focus on macroscopic changes. Although reliable indicators of atrophy, morphological metrics like cortical thickness lack the sensitivity to detect early changes preceding visible atrophy. Our study aimed at exploring the potential of diffusion MRI in unveiling sensitive markers of cortical and subcortical age-related microstructural changes and assessing their associations with cognitive and behavioral deficits. We leveraged the Human Connectome Project-Aging cohort that included 707 participants (394 female; median age = 58, range = 36-90 years) and applied the powerful mean apparent diffusion propagator model to measure microstructural parameters, along with comprehensive behavioral and cognitive test scores. Both macro- and microstructural GM characteristics were strongly associated with age, with widespread significant microstructural correlations reflective of cellular morphological changes, reduced cellular density, increased extracellular volume, and increased membrane permeability. Importantly, when correlating MRI and cognitive test scores, our findings revealed no link between macrostructural volumetric changes and neurobehavioral performance. However, we found that cellular and extracellular alterations in cortical and subcortical GM regions were associated with neurobehavioral performance. Based on these findings, it is hypothesized that increased microstructural heterogeneity and decreased neurite orientation dispersion precede macrostructural changes, and that they play an important role in subsequent cognitive decline. These alterations are suggested to be early markers of neurocognitive performance that may distinctly aid in identifying the mechanisms underlying phenotypic aging and subsequent age-related functional decline.


Asunto(s)
Encéfalo , Humanos , Femenino , Anciano , Persona de Mediana Edad , Masculino , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Anciano de 80 o más Años , Envejecimiento Cognitivo/fisiología , Envejecimiento/fisiología , Envejecimiento/patología , Neuronas/patología
18.
bioRxiv ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38766087

RESUMEN

Despite the presence of significant Alzheimer's disease (AD) pathology, characterized by amyloid ß (Aß) plaques and phosphorylated tau (pTau) tangles, some cognitively normal elderly individuals do not inevitably develop dementia. These findings give rise to the notion of cognitive 'resilience', suggesting maintained cognitive function despite the presence of AD neuropathology, highlighting the influence of factors beyond classical pathology. Cortical astroglial inflammation, a ubiquitous feature of symptomatic AD, shows a strong correlation with cognitive impairment severity, potentially contributing to the diversity of clinical presentations. However, noninvasively imaging neuroinflammation, particularly astrogliosis, using MRI remains a significant challenge. Here we sought to address this challenge and to leverage multidimensional (MD) MRI, a powerful approach that combines relaxation with diffusion MR contrasts, to map cortical astrogliosis in the human brain by accessing sub-voxel information. Our goal was to test whether MD-MRI can map astroglial pathology in the cerebral cortex, and if so, whether it can distinguish cognitive resiliency from dementia in the presence of hallmark AD neuropathological changes. We adopted a multimodal approach by integrating histological and MRI analyses using human postmortem brain samples. Ex vivo cerebral cortical tissue specimens derived from three groups comprised of non-demented individuals with significant AD pathology postmortem, individuals with both AD pathology and dementia, and non-demented individuals with minimal AD pathology postmortem as controls, underwent MRI at 7 T. We acquired and processed MD-MRI, diffusion tensor, and quantitative T 1 and T 2 MRI data, followed by histopathological processing on slices from the same tissue. By carefully co-registering MRI and microscopy data, we performed quantitative multimodal analyses, leveraging targeted immunostaining to assess MD-MRI sensitivity and specificity towards Aß, pTau, and glial fibrillary acidic protein (GFAP), a marker for astrogliosis. Our findings reveal a distinct MD-MRI signature of cortical astrogliosis, enabling the creation of predictive maps for cognitive resilience amid AD neuropathological changes. Multiple linear regression linked histological values to MRI changes, revealing that the MD-MRI cortical astrogliosis biomarker was significantly associated with GFAP burden (standardized ß=0.658, pFDR<0.0001), but not with Aß (standardized ß=0.009, p FDR =0.913) or pTau (standardized ß=-0.196, p FDR =0.051). Conversely, none of the conventional MRI parameters showed significant associations with GFAP burden in the cortex. While the extent to which pathological glial activation contributes to neuronal damage and cognitive impairment in AD is uncertain, developing a noninvasive imaging method to see its affects holds promise from a mechanistic perspective and as a potential predictor of cognitive outcomes.

19.
Neurobiol Aging ; 124: 104-116, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36641369

RESUMEN

The relationship between brain microstructure and aging has been the subject of intense study, with diffusion MRI perhaps the most effective modality for elucidating these associations. Here, we used the mean apparent propagator (MAP)-MRI framework, which is suitable to characterize complex microstructure, to investigate age-related cerebral differences in a cohort of cognitively unimpaired participants and compared the results to those derived using diffusion tensor imaging. We studied MAP-MRI metrics, among them the non-Gaussianity (NG) and propagator anisotropy (PA), and established an opposing pattern in white matter of higher NG alongside lower PA among older adults, likely indicative of axonal degradation. In gray matter, however, these two indices were consistent with one another, and exhibited regional pattern heterogeneity compared to other microstructural parameters, which could indicate fewer neuronal projections across cortical layers along with an increased glial concentration. In addition, we report regional variations in the magnitude of age-related microstructural differences consistent with the posterior-anterior shift in aging paradigm. These results encourage further investigations in cognitive impairments and neurodegeneration.


Asunto(s)
Sustancia Blanca , Humanos , Anciano , Sustancia Blanca/diagnóstico por imagen , Longevidad , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética , Envejecimiento , Sustancia Gris/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
20.
Brain Commun ; 5(5): fcad253, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901038

RESUMEN

Chronic traumatic encephalopathy is a neurodegenerative disease that is diagnosed and staged based on the localization and extent of phosphorylated tau pathology. Although its identification remains the primary diagnostic criteria to distinguish chronic traumatic encephalopathy from other tauopathies, the hyperphosphorylated tau that accumulates in neurofibrillary tangles in cortical grey matter and perivascular regions is often accompanied by concomitant pathology such as astrogliosis. Mean apparent propagator MRI is a clinically feasible diffusion MRI method that is suitable to characterize microstructure of complex biological media efficiently and comprehensively. We performed quantitative correlations between propagator metrics and underlying phosphorylated tau and astroglial pathology in a cross-sectional study of 10 ex vivo human tissue specimens with 'high chronic traumatic encephalopathy' at 0.25 mm isotropic voxels. Linear mixed effects analysis of regions of interest showed significant relationships of phosphorylated tau with propagator-estimated non-Gaussianity in cortical grey matter (P = 0.002) and of astrogliosis with propagator anisotropy in superficial cortical white matter (P = 0.0009). The positive correlation between phosphorylated tau and non-Gaussianity was found to be modest but significant (R2 = 0.44, P = 6.0 × 10-5) using linear regression. We developed an unsupervised clustering algorithm with non-Gaussianity and propagator anisotropy as inputs, which was able to identify voxels in superficial cortical white matter that corresponded to astrocytes that were accumulated at the grey-white matter interface. Our results suggest that mean apparent propagator MRI at high spatial resolution provides a means to not only identify phosphorylated tau pathology but also detect regions with astrocytic pathology and may therefore prove diagnostically valuable in the evaluation of concomitant pathology in cortical tissue with complex microstructure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA