Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Cell ; 177(4): 957-969.e13, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051107

RESUMEN

Patterning in plants relies on oriented cell divisions and acquisition of specific cell identities. Plants regularly endure wounds caused by abiotic or biotic environmental stimuli and have developed extraordinary abilities to restore their tissues after injuries. Here, we provide insight into a mechanism of restorative patterning that repairs tissues after wounding. Laser-assisted elimination of different cells in Arabidopsis root combined with live-imaging tracking during vertical growth allowed analysis of the regeneration processes in vivo. Specifically, the cells adjacent to the inner side of the injury re-activated their stem cell transcriptional programs. They accelerated their progression through cell cycle, coordinately changed the cell division orientation, and ultimately acquired de novo the correct cell fates to replace missing cells. These observations highlight existence of unknown intercellular positional signaling and demonstrate the capability of specified cells to re-acquire stem cell programs as a crucial part of the plant-specific mechanism of wound healing.


Asunto(s)
Raíces de Plantas/metabolismo , Células Madre/metabolismo , Cicatrización de Heridas/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular/fisiología , División Celular , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
2.
Annu Rev Cell Dev Biol ; 28: 463-87, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22856461

RESUMEN

Plants exhibit a unique developmental flexibility to ever-changing environmental conditions. To achieve their profound adaptability, plants are able to maintain permanent stem cell populations and form new organs during the entire plant life cycle. Signaling substances, called plant hormones, such as auxin, cytokinin, abscisic acid, brassinosteroid, ethylene, gibberellin, jasmonic acid, and strigolactone, govern and coordinate these developmental processes. Physiological and genetic studies have dissected the molecular components of signal perception and transduction of the individual hormonal pathways. However, over recent years it has become evident that hormones do not act only in a linear pathway. Hormonal pathways are interconnected by a complex network of interactions and feedback circuits that determines the final outcome of the individual hormone actions. This raises questions about the molecular mechanisms underlying hormonal cross talk and about how these hormonal networks are established, maintained, and modulated throughout plant development.


Asunto(s)
Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/fisiología , Brasinoesteroides/metabolismo , Citocininas/metabolismo , Citocininas/fisiología , Etilenos/metabolismo , Germinación , Giberelinas/metabolismo , Giberelinas/fisiología , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo
3.
EMBO J ; 40(3): e106862, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399250

RESUMEN

Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate-dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Nitrógeno/metabolismo , Arabidopsis/metabolismo , Transporte Biológico , Ácidos Indolacéticos/metabolismo , Fosforilación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(31): e2122460119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878040

RESUMEN

Mineral nutrition is one of the key environmental factors determining plant development and growth. Nitrate is the major form of macronutrient nitrogen that plants take up from the soil. Fluctuating availability or deficiency of this element severely limits plant growth and negatively affects crop production in the agricultural system. To cope with the heterogeneity of nitrate distribution in soil, plants evolved a complex regulatory mechanism that allows rapid adjustment of physiological and developmental processes to the status of this nutrient. The root, as a major exploitation organ that controls the uptake of nitrate to the plant body, acts as a regulatory hub that, according to nitrate availability, coordinates the growth and development of other plant organs. Here, we identified a regulatory framework, where cytokinin response factors (CRFs) play a central role as a molecular readout of the nitrate status in roots to guide shoot adaptive developmental response. We show that nitrate-driven activation of NLP7, a master regulator of nitrate response in plants, fine tunes biosynthesis of cytokinin in roots and its translocation to shoots where it enhances expression of CRFs. CRFs, through direct transcriptional regulation of PIN auxin transporters, promote the flow of auxin and thereby stimulate the development of shoot organs.


Asunto(s)
Ácidos Indolacéticos , Nitratos , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Nitratos/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta , Transducción de Señal , Suelo
5.
EMBO J ; 39(17): e104238, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32667089

RESUMEN

Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine-tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re-organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin-sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Diferenciación Celular , Proliferación Celular , Citocininas/metabolismo , Microtúbulos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Animales , Arabidopsis/genética , Citocininas/genética , Microtúbulos/genética , Raíces de Plantas/genética
6.
Genes Dev ; 30(4): 471-83, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26883363

RESUMEN

To sustain a lifelong ability to initiate organs, plants retain pools of undifferentiated cells with a preserved proliferation capacity. The root pericycle represents a unique tissue with conditional meristematic activity, and its tight control determines initiation of lateral organs. Here we show that the meristematic activity of the pericycle is constrained by the interaction with the adjacent endodermis. Release of these restraints by elimination of endodermal cells by single-cell ablation triggers the pericycle to re-enter the cell cycle. We found that endodermis removal substitutes for the phytohormone auxin-dependent initiation of the pericycle meristematic activity. However, auxin is indispensable to steer the cell division plane orientation of new organ-defining divisions. We propose a dual, spatiotemporally distinct role for auxin during lateral root initiation. In the endodermis, auxin releases constraints arising from cell-to-cell interactions that compromise the pericycle meristematic activity, whereas, in the pericycle, auxin defines the orientation of the cell division plane to initiate lateral roots.


Asunto(s)
Arabidopsis/fisiología , División Celular , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Técnicas de Ablación , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Comunicación Celular , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/citología , Transporte de Proteínas , Transducción de Señal
7.
EMBO Rep ; 22(9): e51813, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34357701

RESUMEN

Nitrate commands genome-wide gene expression changes that impact metabolism, physiology, plant growth, and development. In an effort to identify new components involved in nitrate responses in plants, we analyze the Arabidopsis thaliana root phosphoproteome in response to nitrate treatments via liquid chromatography coupled to tandem mass spectrometry. 176 phosphoproteins show significant changes at 5 or 20 min after nitrate treatments. Proteins identified by 5 min include signaling components such as kinases or transcription factors. In contrast, by 20 min, proteins identified were associated with transporter activity or hormone metabolism functions, among others. The phosphorylation profile of NITRATE TRANSPORTER 1.1 (NRT1.1) mutant plants was significantly altered as compared to wild-type plants, confirming its key role in nitrate signaling pathways that involves phosphorylation changes. Integrative bioinformatics analysis highlights auxin transport as an important mechanism modulated by nitrate signaling at the post-translational level. We validated a new phosphorylation site in PIN2 and provide evidence that it functions in primary and lateral root growth responses to nitrate.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Anión , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutación , Nitratos/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(26): 15322-15331, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541049

RESUMEN

Wound healing in plant tissues, consisting of rigid cell wall-encapsulated cells, represents a considerable challenge and occurs through largely unknown mechanisms distinct from those in animals. Owing to their inability to migrate, plant cells rely on targeted cell division and expansion to regenerate wounds. Strict coordination of these wound-induced responses is essential to ensure efficient, spatially restricted wound healing. Single-cell tracking by live imaging allowed us to gain mechanistic insight into the wound perception and coordination of wound responses after laser-based wounding in Arabidopsis root. We revealed a crucial contribution of the collapse of damaged cells in wound perception and detected an auxin increase specific to cells immediately adjacent to the wound. This localized auxin increase balances wound-induced cell expansion and restorative division rates in a dose-dependent manner, leading to tumorous overproliferation when the canonical TIR1 auxin signaling is disrupted. Auxin and wound-induced turgor pressure changes together also spatially define the activation of key components of regeneration, such as the transcription regulator ERF115. Our observations suggest that the wound signaling involves the sensing of collapse of damaged cells and a local auxin signaling activation to coordinate the downstream transcriptional responses in the immediate wound vicinity.


Asunto(s)
Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Células Vegetales/fisiología , Raíces de Plantas/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/antagonistas & inhibidores , Quinurenina/farmacología , Rayos Láser , Ftalimidas/farmacología , Células Vegetales/efectos de los fármacos , Regeneración/efectos de los fármacos , Regeneración/fisiología , Transducción de Señal/fisiología , Triazoles/farmacología
9.
Development ; 146(17)2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31391194

RESUMEN

The apical hook is a transiently formed structure that plays a protective role when the germinating seedling penetrates through the soil towards the surface. Crucial for proper bending is the local auxin maxima, which defines the concave (inner) side of the hook curvature. As no sign of asymmetric auxin distribution has been reported in embryonic hypocotyls prior to hook formation, the question of how auxin asymmetry is established in the early phases of seedling germination remains largely unanswered. Here, we analyzed the auxin distribution and expression of PIN auxin efflux carriers from early phases of germination, and show that bending of the root in response to gravity is the crucial initial cue that governs the hypocotyl bending required for apical hook formation. Importantly, polar auxin transport machinery is established gradually after germination starts as a result of tight root-hypocotyl interaction and a proper balance between abscisic acid and gibberellins.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Germinación/fisiología , Sensación de Gravedad/fisiología , Hipocótilo/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Ácido Abscísico/metabolismo , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/crecimiento & desarrollo
10.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917959

RESUMEN

Lateral root (LR) formation is an example of a plant post-embryonic organogenesis event. LRs are issued from non-dividing cells entering consecutive steps of formative divisions, proliferation and elongation. The chromatin remodeling protein PICKLE (PKL) negatively regulates auxin-mediated LR formation through a mechanism that is not yet known. Here we show that PKL interacts with RETINOBLASTOMA-RELATED 1 (RBR1) to repress the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) promoter activity. Since LBD16 function is required for the formative division of LR founder cells, repression mediated by the PKL-RBR1 complex negatively regulates formative division and LR formation. Inhibition of LR formation by PKL-RBR1 is counteracted by auxin, indicating that, in addition to auxin-mediated transcriptional responses, the fine-tuned process of LR formation is also controlled at the chromatin level in an auxin-signaling dependent manner.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , ADN Helicasas/metabolismo , Organogénesis de las Plantas/genética , Desarrollo de la Planta/genética , Raíces de Plantas/fisiología , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal
11.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502129

RESUMEN

Size control is a fundamental question in biology, showing incremental complexity in plants, whose cells possess a rigid cell wall. The phytohormone auxin is a vital growth regulator with central importance for differential growth control. Our results indicate that auxin-reliant growth programs affect the molecular complexity of xyloglucans, the major type of cell wall hemicellulose in eudicots. Auxin-dependent induction and repression of growth coincide with reduced and enhanced molecular complexity of xyloglucans, respectively. In agreement with a proposed function in growth control, genetic interference with xyloglucan side decorations distinctly modulates auxin-dependent differential growth rates. Our work proposes that auxin-dependent growth programs have a spatially defined effect on xyloglucan's molecular structure, which in turn affects cell wall mechanics and specifies differential, gravitropic hypocotyl growth.


Asunto(s)
Glucanos/metabolismo , Ácidos Indolacéticos/metabolismo , Células Vegetales/metabolismo , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Xilanos/metabolismo , Arabidopsis/fisiología , Pared Celular/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica de las Plantas , Glucanos/química , Pisum sativum/fisiología , Transducción de Señal , Xilanos/química
12.
J Exp Bot ; 71(15): 4480-4494, 2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-32428238

RESUMEN

In agricultural systems, nitrate is the main source of nitrogen available for plants. Besides its role as a nutrient, nitrate has been shown to act as a signal molecule in plant growth, development, and stress responses. In Arabidopsis, the NRT1.1 nitrate transceptor represses lateral root (LR) development at low nitrate availability by promoting auxin basipetal transport out of the LR primordia (LRPs). Here we show that NRT1.1 acts as a negative regulator of the TAR2 auxin biosynthetic gene in the root stele. This is expected to repress local auxin biosynthesis and thus to reduce acropetal auxin supply to the LRPs. Moreover, NRT1.1 also negatively affects expression of the LAX3 auxin influx carrier, thus preventing the cell wall remodeling required for overlying tissue separation during LRP emergence. NRT1.1-mediated repression of both TAR2 and LAX3 is suppressed at high nitrate availability, resulting in nitrate induction of the TAR2 and LAX3 expression that is required for optimal stimulation of LR development by nitrate. Altogether, our results indicate that the NRT1.1 transceptor coordinately controls several crucial auxin-associated processes required for LRP development, and as a consequence that NRT1.1 plays a much more integrated role than previously expected in regulating the nitrate response of root system architecture.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Mutación , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo
13.
Nature ; 516(7529): 90-3, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25409144

RESUMEN

The prominent and evolutionarily ancient role of the plant hormone auxin is the regulation of cell expansion. Cell expansion requires ordered arrangement of the cytoskeleton but molecular mechanisms underlying its regulation by signalling molecules including auxin are unknown. Here we show in the model plant Arabidopsis thaliana that in elongating cells exogenous application of auxin or redistribution of endogenous auxin induces very rapid microtubule re-orientation from transverse to longitudinal, coherent with the inhibition of cell expansion. This fast auxin effect requires auxin binding protein 1 (ABP1) and involves a contribution of downstream signalling components such as ROP6 GTPase, ROP-interactive protein RIC1 and the microtubule-severing protein katanin. These components are required for rapid auxin- and ABP1-mediated re-orientation of microtubules to regulate cell elongation in roots and dark-grown hypocotyls as well as asymmetric growth during gravitropic responses.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proliferación Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hipocótilo/citología , Hipocótilo/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Receptores de Superficie Celular/genética , Transducción de Señal
14.
Development ; 143(23): 4419-4424, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27737904

RESUMEN

The developmental programme of the pistil is under the control of both auxin and cytokinin. Crosstalk between these factors converges on regulation of the auxin carrier PIN-FORMED 1 (PIN1). Here, we show that in the triple transcription factor mutant cytokinin response factor 2 (crf2) crf3 crf6 both pistil length and ovule number were reduced. PIN1 expression was also lower in the triple mutant and the phenotypes could not be rescued by exogenous cytokinin application. pin1 complementation studies using genomic PIN1 constructs showed that the pistil phenotypes were only rescued when the PCRE1 domain, to which CRFs bind, was present. Without this domain, pin mutants resemble the crf2 crf3 crf6 triple mutant, indicating the pivotal role of CRFs in auxin-cytokinin crosstalk.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/embriología , Proteínas de Transporte de Membrana/metabolismo , Óvulo Vegetal/embriología , Factores de Transcripción/genética , Arabidopsis/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Flores/genética , Organogénesis de las Plantas/genética , Óvulo Vegetal/genética
15.
Development ; 143(18): 3340-9, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27578783

RESUMEN

Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-inducible auxin influx carrier LAX3 plays a key role concentrating this signal in cells overlying LRP. Delimiting LAX3 expression to two adjacent cell files overlying new LRP is crucial to ensure that auxin-regulated cell separation occurs solely along their shared walls. Multiscale modeling has predicted that this highly focused pattern of expression requires auxin to sequentially induce auxin efflux and influx carriers PIN3 and LAX3, respectively. Consistent with model predictions, we report that auxin-inducible LAX3 expression is regulated indirectly by AUXIN RESPONSE FACTOR 7 (ARF7). Yeast one-hybrid screens revealed that the LAX3 promoter is bound by the transcription factor LBD29, which is a direct target for regulation by ARF7. Disrupting auxin-inducible LBD29 expression or expressing an LBD29-SRDX transcriptional repressor phenocopied the lax3 mutant, resulting in delayed lateral root emergence. We conclude that sequential LBD29 and LAX3 induction by auxin is required to coordinate cell separation and organ emergence.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Transporte de Membrana/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética
16.
Plant Cell ; 28(10): 2464-2477, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27754878

RESUMEN

Differential cell growth enables flexible organ bending in the presence of environmental signals such as light or gravity. A prominent example of the developmental processes based on differential cell growth is the formation of the apical hook that protects the fragile shoot apical meristem when it breaks through the soil during germination. Here, we combined in silico and in vivo approaches to identify a minimal mechanism producing auxin gradient-guided differential growth during the establishment of the apical hook in the model plant Arabidopsis thaliana Computer simulation models based on experimental data demonstrate that asymmetric expression of the PIN-FORMED auxin efflux carrier at the concave (inner) versus convex (outer) side of the hook suffices to establish an auxin maximum in the epidermis at the concave side of the apical hook. Furthermore, we propose a mechanism that translates this maximum into differential growth, and thus curvature, of the apical hook. Through a combination of experimental and in silico computational approaches, we have identified the individual contributions of differential cell elongation and proliferation to defining the apical hook and reveal the role of auxin-ethylene crosstalk in balancing these two processes.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Simulación por Computador , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo
17.
Plant Mol Biol ; 97(4-5): 407-420, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29948659

RESUMEN

KEY MESSAGE: Arabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2. Telomerase maintains telomeres and has proposed non-telomeric functions. We previously identified interaction of the C-terminal domain of Arabidopsis telomerase reverse transcriptase (AtTERT) with an armadillo/ß-catenin-like repeat (ARM) containing protein. Here we explore protein-protein interactions of the ARM protein, AtTERT domains, POT1a, TRF-like family and SMH family proteins, and the chromatin remodeling protein CHR19 using bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H) analysis, and co-immunoprecipitation. The ARM protein interacts with both the N- and C-terminal domains of AtTERT in different cellular compartments. ARM interacts with CHR19 and TRF-like I family proteins that also bind AtTERT directly or through interaction with POT1a. The putative human ARM homolog co-precipitates telomerase activity and interacts with hTRF2 protein in vitro. Analysis of Arabidopsis arm mutants shows no obvious changes in telomere length or telomerase activity, suggesting that ARM is not essential for telomere maintenance. The observed interactions with telomerase and Myb-like domain proteins (TRF-like family I) may therefore reflect possible non-telomeric functions. Transcript levels of several DNA repair and ribosomal genes are affected in arm mutants, and ARM, likely in association with other proteins, suppressed expression of XRCC3 and RPSAA promoter constructs in luciferase reporter assays. In conclusion, ARM can participate in non-telomeric functions of telomerase, and can also perform its own telomerase-independent functions.


Asunto(s)
Arabidopsis/enzimología , Proteínas del Dominio Armadillo/metabolismo , Telomerasa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas del Dominio Armadillo/genética , Genes Reporteros , Holoenzimas , Humanos , Telomerasa/genética , Técnicas del Sistema de Dos Híbridos
18.
Plant Physiol ; 174(1): 387-404, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28292856

RESUMEN

In plants, the multistep phosphorelay (MSP) pathway mediates a range of regulatory processes, including those activated by cytokinins. The cross talk between cytokinin response and light has been known for a long time. However, the molecular mechanism underlying the interaction between light and cytokinin signaling remains elusive. In the screen for upstream regulators we identified a LONG PALE HYPOCOTYL (LPH) gene whose activity is indispensable for spatiotemporally correct expression of CYTOKININ INDEPENDENT1 (CKI1), encoding the constitutively active sensor His kinase that activates MSP signaling. lph is a new allele of HEME OXYGENASE1 (HY1) that encodes the key protein in the biosynthesis of phytochromobilin, a cofactor of photoconvertible phytochromes. Our analysis confirmed the light-dependent regulation of the CKI1 expression pattern. We show that CKI1 expression is under the control of phytochrome A (phyA), functioning as a dual (both positive and negative) regulator of CKI1 expression, presumably via the phyA-regulated transcription factors (TF) PHYTOCHROME INTERACTING FACTOR3 and CIRCADIAN CLOCK ASSOCIATED1. Changes in CKI1 expression observed in lph/hy1-7 and phy mutants correlate with misregulation of MSP signaling, changed cytokinin sensitivity, and developmental aberrations that were previously shown to be associated with cytokinin and/or CKI1 action. Besides that, we demonstrate a novel role of phyA-dependent CKI1 expression in the hypocotyl elongation and hook development during skotomorphogenesis. Based on these results, we propose that the light-dependent regulation of CKI1 provides a plausible mechanistic link underlying the well-known interaction between light- and cytokinin-controlled plant development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/efectos de la radiación , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Proteínas Quinasas/genética , Transducción de Señal/efectos de la radiación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Modelos Genéticos , Mutación , Fitocromo A/genética , Fitocromo A/metabolismo , Plantas Modificadas Genéticamente , Proteínas Quinasas/metabolismo , Transducción de Señal/genética
19.
J Exp Bot ; 69(21): 5169-5176, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30312436

RESUMEN

Seeds derive from ovules upon fertilization and therefore the total number of ovules determines the final seed yield, a fundamental trait in crop plants. Among the factors that co-ordinate the process of ovule formation, the transcription factors CUP-SHAPED COTYLEDON 1 (CUC1) and CUC2 and the hormone cytokinin (CK) have a particularly prominent role. Indeed, the absence of both CUC1 and CUC2 causes a severe reduction in ovule number, a phenotype that can be rescued by CK treatment. In this study, we combined CK quantification with an integrative genome-wide target identification approach to select Arabidopsis genes regulated by CUCs that are also involved in CK metabolism. We focused our attention on the functional characterization of UDP-GLUCOSYL TRANSFERASE 85A3 (UGT85A3) and UGT73C1, which are up-regulated in the absence of CUC1 and CUC2 and encode enzymes able to catalyse CK inactivation by O-glucosylation. Our results demonstrate a role for these UGTs as a link between CUCs and CK homeostasis, and highlight the importance of CUCs and CKs in the determination of seed yield.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Citocininas/metabolismo , Óvulo Vegetal/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Homeostasis
20.
EMBO J ; 32(1): 149-58, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23178590

RESUMEN

Lateral root (LR) formation is initiated when pericycle cells accumulate auxin, thereby acquiring founder cell (FC) status and triggering asymmetric cell divisions, giving rise to a new primordium. How this auxin maximum in pericycle cells builds up and remains focused is not understood. We report that the endodermis plays an active role in the regulation of auxin accumulation and is instructive for FCs to progress during the LR initiation (LRI) phase. We describe the functional importance of a PIN3 (PIN-formed) auxin efflux carrier-dependent hormone reflux pathway between overlaying endodermal and pericycle FCs. Disrupting this reflux pathway causes dramatic defects in the progress of FCs towards the next initiation phase. Our data identify an unexpected regulatory function for the endodermis in LRI as part of the fine-tuning mechanism that appears to act as a check point in LR organogenesis after FCs are specified.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , División Celular Asimétrica , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Mutación , Ácidos Naftalenoacéticos/farmacología , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión , Plantones/citología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Transducción de Señal , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA