Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 151(3): 658-70, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23101632

RESUMEN

Many common diseases have an important inflammatory component mediated in part by macrophages. Here we used a systems genetics strategy to examine the role of common genetic variation in macrophage responses to inflammatory stimuli. We examined genome-wide transcript levels in macrophages from 92 strains of the Hybrid Mouse Diversity Panel. We exposed macrophages to control media, bacterial lipopolysaccharide (LPS), or oxidized phospholipids. We performed association mapping under each condition and identified several thousand expression quantitative trait loci (eQTL), gene-by-environment interactions, and eQTL "hot spots" that specifically control LPS responses. We used siRNA knockdown of candidate genes to validate an eQTL hot spot in chromosome 8 and identified the gene 2310061C15Rik as a regulator of inflammatory responses in macrophages. We have created a public database where the data presented here can be used as a resource for understanding many common inflammatory traits that are modeled in the mouse and for the dissection of regulatory relationships between genes.


Asunto(s)
Interacción Gen-Ambiente , Inflamación/inmunología , Macrófagos/inmunología , Ratones/genética , Sitios de Carácter Cuantitativo , Animales , Células Cultivadas , Técnicas de Silenciamiento del Gen , Lipopolisacáridos/inmunología , Macrófagos/metabolismo , Masculino , Ratones/inmunología , Ratones Endogámicos , Especificidad de la Especie , Organismos Libres de Patógenos Específicos , Biología de Sistemas/métodos
2.
PLoS Genet ; 19(10): e1010997, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37871105

RESUMEN

Diet-related metabolic syndrome is the largest contributor to adverse health in the United States. However, the study of gene-environment interactions and their epigenomic and transcriptomic integration is complicated by the lack of environmental and genetic control in humans that is possible in mouse models. Here we exposed three mouse strains, C57BL/6J (BL6), A/J, and NOD/ShiLtJ (NOD), to a high-fat, high-carbohydrate diet, leading to varying degrees of metabolic syndrome. We then performed transcriptomic and genome-wide DNA methylation analyses for each strain and found overlapping but also highly divergent changes in gene expression and methylation upstream of the discordant metabolic phenotypes. Strain-specific pathway analysis of dietary effects revealed a dysregulation of cholesterol biosynthesis common to all three strains but distinct regulatory networks driving this dysregulation. This suggests a strategy for strain-specific targeted pharmacologic intervention of these upstream regulators informed by epigenetic and transcriptional regulation. As a pilot study, we administered the drug GW4064 to target one of these genotype-dependent networks, the farnesoid X receptor pathway, and found that GW4064 exerts strain-specific protection against dietary effects in BL6, as predicted by our transcriptomic analysis. Furthermore, GW4064 treatment induced inflammatory-related gene expression changes in NOD, indicating a strain-specific effect in its associated toxicities as well as its therapeutic efficacy. This pilot study demonstrates the potential efficacy of precision therapeutics for genotype-informed dietary metabolic intervention and a mouse platform for guiding this approach.


Asunto(s)
Síndrome Metabólico , Humanos , Ratones , Animales , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Epigenómica , Proyectos Piloto , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Dieta Alta en Grasa/efectos adversos , Epigénesis Genética
3.
Physiol Genomics ; 56(7): 492-505, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557280

RESUMEN

Low-density lipoprotein cholesterol (LDL-c) is both a therapeutic target and a risk factor for cardiovascular disease (CVD). MicroRNA (miRNA) has been shown to regulate cholesterol homeostasis, and miRNA in blood circulation has been linked to hypercholesterolemia. However, few studies to date have associated miRNA with phenotypes like LDL-c in a healthy population. To this end, we analyzed circulating miRNA in relation to LDL-c in a healthy cohort of 353 participants using two separate bioinformatic approaches. The first approach found that miR-15b-5p and miR-16-5p were upregulated in individuals with at-risk levels of LDL-c. The second approach identified two miRNA clusters, one that positively and a second that negatively correlated with LDL-c. Included in the cluster that positively correlated with LDL-c were miR-15b-5p and miR-16-5p, as well as other miRNA from the miR-15/107, miR-30, and let-7 families. Cross-species analyses suggested that several miRNAs that associated with LDL-c are conserved between mice and humans. Finally, we examined the influence of diet on circulating miRNA. Our results robustly linked circulating miRNA with LDL-c, suggesting that miRNA could be used as biomarkers for hypercholesterolemia or targets for developing cholesterol-lowering drugs.NEW & NOTEWORTHY This study explored the association between circulating microRNA (miRNA) and low-density lipoprotein cholesterol (LDL-c) in a healthy population of 353 participants. Two miRNAs, miR-15b-5p and miR-16-5p, were upregulated in individuals with at-risk LDL-c levels. Several miRNA clusters were positively and negatively correlated with LDL-c and are known to target mRNA involved in lipid metabolism. The study also investigated the influence of diet on circulating miRNA, suggesting potential biomarkers for hypercholesterolemia.


Asunto(s)
LDL-Colesterol , MicroARN Circulante , MicroARNs , Humanos , Masculino , Femenino , LDL-Colesterol/sangre , Persona de Mediana Edad , Estudios de Cohortes , Adulto , MicroARN Circulante/sangre , MicroARN Circulante/genética , MicroARNs/sangre , MicroARNs/genética , Animales , Ratones , Biomarcadores/sangre , Estados Unidos , Lípidos/sangre , Hipercolesterolemia/genética , Hipercolesterolemia/sangre , Anciano
4.
J Biol Inorg Chem ; 29(4): 427-439, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38796812

RESUMEN

Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile; TPN) is an environmentally persistent fungicide that sees heavy use in the USA and is highly toxic to aquatic species and birds, as well as a probable human carcinogen. The chlorothalonil dehalogenase from Pseudomonas sp. CTN-3 (Chd, UniProtKB C9EBR5) degrades TPN to its less toxic 4-OH-TPN analog making it an exciting candidate for the development of a bioremediation process for TPN; however, little is currently known about its catalytic mechanism. Therefore, an active site residue histidine-114 (His114) which forms a hydrogen bond with the Zn(II)-bound water/hydroxide and has been suggested to be the active site acid/base, was substituted by an Ala residue. Surprisingly, ChdH114A exhibited catalytic activity with a kcat value of 1.07 s-1, ~ 5% of wild-type (WT) Chd, and a KM of 32 µM. Thus, His114 is catalytically important but not essential. The electronic and structural aspects of the WT Chd and ChdH114A active sites were examined using UV-Vis and EPR spectroscopy on the catalytically competent Co(II)-substituted enzyme as well as all-atomistic molecular dynamics (MD) simulations. Combination of these data suggest His114 can quickly and reversibly move nearly 2 Å between one conformation that facilitates catalysis and another that enables product egress and active site recharge. In light of experimental and computational data on ChdH114A, Asn216 appears to play a role in substrate binding and preorganization of the transition-state while Asp116 likely facilitates the deprotonation of the Zn(II)-bound water in the absence of His114. Based on these data, an updated proposed catalytic mechanism for Chd is presented.


Asunto(s)
Histidina , Nitrilos , Pseudomonas , Pseudomonas/enzimología , Pseudomonas/metabolismo , Nitrilos/metabolismo , Nitrilos/química , Histidina/química , Histidina/metabolismo , Hidrólisis , Biocatálisis , Dominio Catalítico , Fungicidas Industriales/química , Fungicidas Industriales/metabolismo , Halogenación , Hidrolasas/metabolismo , Hidrolasas/química
5.
Genes Dev ; 30(12): 1440-53, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27340176

RESUMEN

Superenhancers (SEs) are large genomic regions with a high density of enhancer marks. In cancer, SEs are found near oncogenes and dictate cancer gene expression. However, how oncogenic SEs are regulated remains poorly understood. Here, we show that INO80, a chromatin remodeling complex, is required for SE-mediated oncogenic transcription and tumor growth in melanoma. The expression of Ino80, the SWI/SNF ATPase, is elevated in melanoma cells and patient melanomas compared with normal melanocytes and benign nevi. Furthermore, Ino80 silencing selectively inhibits melanoma cell proliferation, anchorage-independent growth, tumorigenesis, and tumor maintenance in mouse xenografts. Mechanistically, Ino80 occupies >90% of SEs, and its occupancy is dependent on transcription factors such as MITF and Sox9. Ino80 binding reduces nucleosome occupancy and facilitates Mediator recruitment, thus promoting oncogenic transcription. Consistently, genes co-occupied by Ino80 and Med1 are selectively expressed in melanomas compared with melanocytes. Together, our results reveal an essential role of INO80-dependent chromatin remodeling in SE function and suggest a novel strategy for disrupting SEs in cancer treatment.


Asunto(s)
Carcinogénesis/genética , Proteínas de Ciclo Celular/metabolismo , Elementos de Facilitación Genéticos/fisiología , Regulación Neoplásica de la Expresión Génica/genética , Melanoma/genética , Melanoma/fisiopatología , Proteínas Nucleares/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proliferación Celular/genética , Ensamble y Desensamble de Cromatina/genética , Silenciador del Gen , Xenoinjertos , Humanos , Subunidad 1 del Complejo Mediador/genética , Melanocitos/metabolismo , Melanoma/enzimología , Ratones , Proteínas Nucleares/genética , Unión Proteica , Factores de Transcripción/metabolismo
6.
Nucleic Acids Res ; 49(12): 6739-6755, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34139016

RESUMEN

The INO80 chromatin remodeler is involved in many chromatin-dependent cellular functions. However, its role in pluripotency and cell fate transition is not fully defined. We examined the impact of Ino80 deletion in the naïve and primed pluripotent stem cells. We found that Ino80 deletion had minimal effect on self-renewal and gene expression in the naïve state, but led to cellular differentiation and de-repression of developmental genes in the transition toward and maintenance of the primed state. In the naïve state, INO80 pre-marked gene promoters that would adopt bivalent histone modifications by H3K4me3 and H3K27me3 upon transition into the primed state. In the primed state, in contrast to its known role in H2A.Z exchange, INO80 promoted H2A.Z occupancy at these bivalent promoters and facilitated H3K27me3 installation and maintenance as well as downstream gene repression. Together, our results identified an unexpected function of INO80 in H2A.Z deposition and gene regulation. We showed that INO80-dependent H2A.Z occupancy is a critical licensing step for the bivalent domains, and thereby uncovered an epigenetic mechanism by which chromatin remodeling, histone variant deposition and histone modification coordinately control cell fate.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/fisiología , Proteínas de Unión al ADN/fisiología , Código de Histonas , Histonas/metabolismo , Células Madre Pluripotentes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Diferenciación Celular , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Ratones , Células Madre Pluripotentes/citología , Regiones Promotoras Genéticas
7.
J Ren Nutr ; 33(2): 316-325, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36270479

RESUMEN

OBJECTIVE: Chronic kidney disease (CKD) is associated with decreased anabolic response to insulin contributing to protein-energy wasting. Targeted metabolic profiling of oral glucose tolerance testing (OGTT) may help identify metabolic pathways contributing to disruptions to insulin response in CKD. METHODS: Using targeted metabolic profiling, we studied the plasma metabolome response in 41 moderate-to-severe nondiabetic CKD patients and 20 healthy controls at fasting and 2 hours after an oral glucose load. We used linear mixed modeling with random intercepts, adjusting for age, gender, race/ethnicity, body weight, and batch to assess heterogeneity in response to OGTT by CKD status. RESULTS: Mean estimated glomerular filtration rate among CKD participants was 38.9 ± 12.7 mL/min per 1.73 m2 compared to 87.2 ± 17.7 mL/min per 1.73 m2 among controls. Glucose ingestion induced an anabolic response resulting in increased glycolysis products and a reduction in a wide range of metabolites including amino acids, tricarboxylic acid cycle intermediates, and purine nucleotides compared to fasting. Participants with CKD demonstrated a blunted anabolic response to OGTT evidenced by significant changes in 13 metabolites compared to controls. The attenuated metabolome response predominant involved mitochondrial energy metabolism, vitamin B family, and purine nucleotides. Compared to controls, CKD participants had elevated lactate:pyruvate (L:P) ratio and decreased guanosine diphosphate:guanosine triphosphate ratio during OGTT. CONCLUSION: Metabolic profiling of OGTT response suggests a broad disruption of mitochondrial energy metabolism in CKD patients. These findings motivate further investigation into the impact of insulin sensitizers and mitochondrial targeted therapeutics on energy metabolism in patients with nondiabetic CKD.


Asunto(s)
Resistencia a la Insulina , Insuficiencia Renal Crónica , Humanos , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina/fisiología , Insulina , Glucosa , Metaboloma , Glucemia/metabolismo
8.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768394

RESUMEN

Plasma trimethylamine n-oxide (TMAO) concentration increases in responses to feeding TMAO, choline, phosphatidylcholine, L-carnitine, and betaine but it is unknown whether concentrations change following a mixed macronutrient tolerance test (MMTT) with limited amounts of TMAO precursors. In this proof-of-concept study, we provided healthy female and male adults (n = 97) ranging in age (18-65 years) and BMI (18-44 kg/m2) a MMTT (60% fat, 25% sucrose; 42% of a standard 2000 kilo calorie diet) and recorded their metabolic response at fasting and at 30 min, 3 h, and 6 h postprandially. We quantified total exposure to TMAO (AUC-TMAO) and classified individuals by the blood draw at which they experienced their maximal TMAO concentration (TMAO-response groups). We related AUC-TMAO to the 16S rRNA microbiome, to two SNPs in the exons of the FMO3 gene (rs2266782, G>A, p.Glu158Lys; and rs2266780, A>G, p.Glu308Gly), and to a priori plasma metabolites. We observed varying TMAO responses (timing and magnitude) and identified a sex by age interaction such that AUC-TMAO increased with age in females but not in males (p-value = 0.0112). Few relationships between AUC-TMAO and the fecal microbiome and FMO3 genotype were identified. We observed a strong correlation between AUC-TMAO and TNF-α that depended on TMAO-response group. These findings promote precision nutrition and have important ramifications for the eating behavior of adults who could benefit from reducing TMAO exposure, and for understanding factors that generate plasma TMAO.


Asunto(s)
Betaína , Colina , Humanos , Masculino , Adulto , Femenino , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano , ARN Ribosómico 16S , Colina/metabolismo , Metilaminas/metabolismo , Nutrientes
9.
Matern Child Nutr ; 19(2): e13471, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36567549

RESUMEN

Choline is an essential micronutrient that may influence growth and development; however, few studies have examined postnatal choline status and children's growth and development in low- and middle-income countries. The aim of this observational analysis was to examine associations of plasma choline with growth and development among Malawian children aged 6-15 months enrolled in an egg intervention trial. Plasma choline and related metabolites (betaine, dimethylglycine and trimethylamine N-oxide) were measured at baseline and 6-month follow-up, along with anthropometric (length, weight, head circumference) and developmental assessments (the Malawi Developmental Assessment Tool [MDAT], the Infant Orienting with Attention task [IOWA], a visual paired comparison [VPC] task and an elicited imitation [EI] task). In cross-sectional covariate-adjusted models, each 1 SD higher plasma choline was associated with lower length-for-age z-score (-0.09 SD [95% confidence interval, CI -0.17 to -0.01]), slower IOWA response time (8.84 ms [1.66-16.03]) and faster processing speed on the VPC task (-203.5 ms [-366.2 to -40.7]). In predictive models, baseline plasma choline was negatively associated with MDAT fine motor z-score at 6-month follow-up (-0.13 SD [-0.22 to -0.04]). There were no other significant associations of plasma choline with child measures. Similarly, associations of choline metabolites with growth and development were null except higher trimethylamine N-oxide was associated with slower information processing on the VPC task and higher memory scores on the EI task. In this cohort of children with low dietary choline intake, we conclude that there were no strong or consistent associations between plasma choline and growth and development.


Asunto(s)
Betaína , Colina , Lactante , Humanos , Niño , Colina/metabolismo , Estudios Transversales , Metilaminas
10.
J Biol Chem ; 296: 100107, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33219127

RESUMEN

A key step in bacteriochlorophyll biosynthesis is the reduction of protochlorophyllide to chlorophyllide, catalyzed by dark-operative protochlorophyllide oxidoreductase. Dark-operative protochlorophyllide oxidoreductase contains two [4Fe-4S]-containing component proteins (BchL and BchNB) that assemble upon ATP binding to BchL to coordinate electron transfer and protochlorophyllide reduction. But the precise nature of the ATP-induced conformational changes is poorly understood. We present a crystal structure of BchL in the nucleotide-free form where a conserved, flexible region in the N-terminus masks the [4Fe-4S] cluster at the docking interface between BchL and BchNB. Amino acid substitutions in this region produce a hyperactive enzyme complex, suggesting a role for the N-terminus in autoinhibition. Hydrogen-deuterium exchange mass spectrometry shows that ATP binding to BchL produces specific conformational changes leading to release of the flexible N-terminus from the docking interface. The release also promotes changes within the local environment surrounding the [4Fe-4S] cluster and promotes BchL-complex formation with BchNB. A key patch of amino acids, Asp-Phe-Asp (the 'DFD patch'), situated at the mouth of the BchL ATP-binding pocket promotes intersubunit cross stabilization of the two subunits. A linked BchL dimer with one defective ATP-binding site does not support protochlorophyllide reduction, illustrating nucleotide binding to both subunits as a prerequisite for the intersubunit cross stabilization. The masking of the [4Fe-4S] cluster by the flexible N-terminal region and the associated inhibition of the activity is a novel mechanism of regulation in metalloproteins. Such mechanisms are possibly an adaptation to the anaerobic nature of eubacterial cells with poor tolerance for oxygen.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Hierro-Azufre/metabolismo , Adenosina Trifosfato/química , Catálisis , Proteínas Hierro-Azufre/química , Espectrometría de Masas , Nitrogenasa/química , Nitrogenasa/metabolismo , Fotosíntesis , Protoclorofilida/química , Protoclorofilida/metabolismo , Especificidad por Sustrato
11.
Inorg Chem ; 61(20): 7715-7719, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35549215

RESUMEN

Linkage isomers are coordination compounds with the same composition but different donor atoms, resulting in distinct physical and electronic structures. A pair of linkage isomers, CuL555 and CuL465, derived from phenylglyoxal bis(ethylthiocarbamate) were synthesized, isolated, and characterized by structural, electrochemical, and spectroscopic methods. The isomers are stable in solution under ambient conditions, but CuL465 converts to CuL555 in acid, consistent with quantum-chemical calculations. The complexes were screened against a lung adenocarcinoma cell line (A549) and a nonmalignant lung fibroblast cell line (IMR-90) to evaluate the antiproliferation activity. CuL555 and CuL465 possessed EC50 values of 0.113 ± 0.030 and 0.115 ± 0.038 µM for A549 and 1.87 ± 0.29 and 0.77 ± 0.22 µM for IMR-90, respectively.


Asunto(s)
Cobre , Cobre/química , Cobre/farmacología , Isomerismo
12.
Nutr Metab Cardiovasc Dis ; 32(1): 210-219, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34895998

RESUMEN

BACKGROUND AND AIMS: Recent evidence links trimethylamine oxide (TMAO) to endothelial dysfunction, an early indicator of cardiovascular disease. We aimed to determine whether short-term consumption of a diet patterned after the 2010 Dietary Guidelines for Americans (DGA) would affect endothelial function, plasma TMAO concentrations, and cardiovascular disease risk, differently than a typical American Diet (TAD). METHODS AND RESULTS: An 8-wk controlled feeding trial was conducted in overweight/obese women pre-screened for insulin resistance and/or dyslipidemia. Women were randomized to a DGA or TAD group (n = 22/group). At wk0 (pre-intervention) and wk8 (post-intervention) vascular age was calculated; endothelial function (reactive hyperemia index (RHI)) and augmentation index (AI@75) were measured using EndoPAT, and plasma TMAO was measured by LC-MS/MS. Vascular age was reduced in DGA at wk8 compared to wk0 but TAD wk8 was not different from wk0 (DGA wk0: 54.2 ± 4.0 vs. wk8: 50.5 ± 3.1 (p = 0.05), vs. TAD wk8: 47.7 ± 2.3). Plasma TMAO concentrations, RHI, and AI@75 were not different between groups or weeks. CONCLUSION: Consumption of a diet based on the 2010 Dietary Guidelines for Americans for 8 weeks did not improve endothelial function or reduce plasma TMAO. CLINICALTRIALS.GOV: NCT02298725.


Asunto(s)
Factores de Riesgo Cardiometabólico , Dieta , Metilaminas/sangre , Cromatografía Liquida , Femenino , Humanos , Política Nutricional , Obesidad , Sobrepeso , Espectrometría de Masas en Tándem , Estados Unidos/epidemiología
13.
Nucleic Acids Res ; 48(9): 4756-4768, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32232341

RESUMEN

Estrogen receptors (ER) are activated by the steroid hormone 17ß-estradiol. Estrogen receptor alpha (ER-α) forms a regulatory network in mammary epithelial cells and in breast cancer with the transcription factors FOXA1 and GATA3. GATA3 is one of the most frequently mutated genes in breast cancer and is capable of specifying chromatin localization of FOXA1 and ER-α. How GATA3 mutations found in breast cancer impact genomic localization of ER-α and the transcriptional network downstream of ER-α and FOXA1 remains unclear. Here, we investigate the function of a recurrent patient-derived GATA3 mutation (R330fs) on this regulatory network. Genomic analysis indicates that the R330fs mutant can disrupt localization of ER-α and FOXA1. Loci co-bound by all three factors are enriched for genes integral to mammary gland development as well as epithelial cell biology. This gene set is differentially regulated in GATA3 mutant cells in culture and in tumors bearing similar mutations in vivo. The altered distribution of ER-α and FOXA1 in GATA3-mutant cells is associated with altered chromatin architecture, which leads to differential gene expression. These results suggest an active role for GATA3 zinc finger 2 mutants in ER-α positive breast tumors.


Asunto(s)
Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/metabolismo , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Femenino , Humanos , Mutación , Transcripción Genética
14.
Biochemistry ; 60(49): 3771-3782, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34843221

RESUMEN

A new method to trap catalytic intermediate species was employed with Fe-type nitrile hydratase from Rhodococcus equi TG328-2 (ReNHase). ReNHase was incubated with substrates in a 23% (w/w) NaCl/H2O eutectic system that remained liquid at -20 °C, thereby permitting the observation of transient species that were present at electron paramagnetic resonance (EPR)-detectable levels in samples frozen while in the steady state. FeIII-EPR signals from the resting enzyme were unaffected by the presence of 23% NaCl, and the catalytic activity was ∼55% that in the absence of NaCl at the optimum pH of 7.5. The reaction of ReNHase in the eutectic system at -20 °C with the substrates acetonitrile or benzonitrile induced significant changes in the EPR spectra. A previously unobserved signal with highly rhombic g-values (g1 = 2.31) was observed during the steady state but did not persist beyond the exhaustion of the substrate, indicating that it arises from a catalytically competent intermediate. Distinct signals due to product complexes provide a detailed mechanism for product release, the rate-limiting step of the reaction. Assignment of the observed EPR signals was facilitated by density functional theory calculations, which provided candidate structures and g-values for various proposed ReNHase intermediates. Collectively, these results provide new insights into the catalytic mechanism of NHase and offer a new approach for isolating and characterizing EPR-active intermediates in metalloenzymes.


Asunto(s)
Acetonitrilos/química , Proteínas Bacterianas/química , Hidroliasas/química , Hierro/química , Nitrilos/química , Rhodococcus equi/química , Acetonitrilos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , Frío , Disolventes Eutécticos Profundos/química , Teoría Funcional de la Densidad , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Hidroliasas/genética , Hidroliasas/metabolismo , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Cinética , Nitrilos/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodococcus equi/enzimología , Cloruro de Sodio/química , Especificidad por Sustrato , Agua/química
15.
Physiol Genomics ; 53(5): 173-192, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33818129

RESUMEN

Mice have provided critical mechanistic understandings of clinical traits underlying metabolic syndrome (MetSyn) and susceptibility to MetSyn in mice is known to vary among inbred strains. We investigated the diet- and strain-dependent effects on metabolic traits in the eight Collaborative Cross (CC) founder strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Liver transcriptomics analysis showed that both atherogenic diet and host genetics have profound effects on the liver transcriptome, which may be related to differences in metabolic traits observed between strains. We found strain differences in circulating trimethylamine N-oxide (TMAO) concentration and liver triglyceride content, both of which are traits associated with metabolic diseases. Using a network approach, we identified a module of transcripts associated with TMAO and liver triglyceride content, which was enriched in functional pathways. Interrogation of the module related to metabolic traits identified NADPH oxidase 4 (Nox4), a gene for a key enzyme in the production of reactive oxygen species, which showed a strong association with plasma TMAO and liver triglyceride. Interestingly, Nox4 was identified as the highest expressed in the C57BL/6J and NZO/HILtJ strains and the lowest expressed in the CAST/EiJ strain. Based on these results, we suggest that there may be genetic variation in the contribution of Nox4 to the regulation of plasma TMAO and liver triglyceride content. In summary, we show that liver transcriptomic analysis identified diet- or strain-specific pathways for metabolic traits in the Collaborative Cross (CC) founder strains.


Asunto(s)
Ratones de Colaboración Cruzada/genética , Ratones de Colaboración Cruzada/metabolismo , Dieta , Hígado/fisiología , Animales , Dieta Aterogénica/efectos adversos , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Antecedentes Genéticos , Hígado/metabolismo , Metilaminas/sangre , Ratones Endogámicos C57BL , NADPH Oxidasa 4/genética , Triglicéridos/metabolismo
16.
J Biol Chem ; 295(39): 13630-13639, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32737200

RESUMEN

A key step in bacteriochlorophyll biosynthesis is the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), catalyzed by dark-operative protochlorophyllide oxidoreductase (DPOR). DPOR is made of electron donor (BchL) and acceptor (BchNB) component proteins. BchNB is further composed of two subunits each of BchN and BchB arranged as an α2ß2 heterotetramer with two active sites for substrate reduction. Such oligomeric architectures are found in several other electron transfer (ET) complexes, but how this architecture influences activity is unclear. Here, we describe allosteric communication between the two identical active sites in Rhodobacter sphaeroides BchNB that drives sequential and asymmetric ET. Pchlide binding to one BchNB active site initiates ET from the pre-reduced [4Fe-4S] cluster of BchNB, a process similar to the deficit spending mechanism observed in the structurally related nitrogenase complex. Pchlide binding in one active site is recognized in trans by an Asp-274 from the opposing half, which is positioned to serve as the initial proton donor. A D274A variant DPOR binds to two Pchlide molecules in the BchNB complex, but only one is bound productively, stalling Pchlide reduction in both active sites. A half-active complex combining one WT and one D274A monomer also stalled after one electron was transferred in the WT half. We propose that such sequential electron transfer in oligomeric enzymes serves as a regulatory mechanism to ensure binding and recognition of the correct substrate. The findings shed light on the functional advantages imparted by the oligomeric architecture found in many electron transfer enzymes.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Rhodobacter sphaeroides/enzimología , Transporte de Electrón , Especificidad por Sustrato
17.
J Biol Chem ; 295(26): 8668-8677, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32358058

RESUMEN

Cleavage of aromatic carbon-chlorine bonds is critical for the degradation of toxic industrial compounds. Here, we solved the X-ray crystal structure of chlorothalonil dehalogenase (Chd) from Pseudomonas sp. CTN-3, with 15 of its N-terminal residues truncated (ChdT), using single-wavelength anomalous dispersion refined to 1.96 Å resolution. Chd has low sequence identity (<15%) compared with all other proteins whose structures are currently available, and to the best of our knowledge, we present the first structure of a Zn(II)-dependent aromatic dehalogenase that does not require a coenzyme. ChdT forms a "head-to-tail" homodimer, formed between two α-helices from each monomer, with three Zn(II)-binding sites, two of which occupy the active sites, whereas the third anchors a structural site at the homodimer interface. The catalytic Zn(II) ions are solvent-accessible via a large hydrophobic (8.5 × 17.8 Å) opening to bulk solvent and two hydrophilic branched channels. Each active-site Zn(II) ion resides in a distorted trigonal bipyramid geometry with His117, His257, Asp116, Asn216, and a water/hydroxide as ligands. A conserved His residue, His114, is hydrogen-bonded to the Zn(II)-bound water/hydroxide and likely functions as the general acid-base. We examined substrate binding by docking chlorothalonil (2,4,5,6-tetrachloroisophtalonitrile, TPN) into the hydrophobic channel and observed that the most energetically favorable pose includes a TPN orientation that coordinates to the active-site Zn(II) ions via a CN and that maximizes a π-π interaction with Trp227 On the basis of these results, along with previously reported kinetics data, we propose a refined catalytic mechanism for Chd-mediated TPN dehalogenation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fungicidas Industriales/metabolismo , Hidrolasas/metabolismo , Nitrilos/metabolismo , Pseudomonas/enzimología , Proteínas Bacterianas/química , Biodegradación Ambiental , Dominio Catalítico , Cristalografía por Rayos X , Halogenación , Hidrolasas/química , Hidrólisis , Simulación del Acoplamiento Molecular , Conformación Proteica , Pseudomonas/química , Pseudomonas/metabolismo , Especificidad por Sustrato
18.
J Biol Chem ; 295(5): 1271-1287, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31806706

RESUMEN

Proteasome activity is required for diverse cellular processes, including transcriptional and epigenetic regulation. However, inhibiting proteasome activity can lead to an increase in transcriptional output that is correlated with enriched levels of trimethyl H3K4 and phosphorylated forms of RNA polymerase (Pol) II at the promoter and gene body. Here, we perform gene expression analysis and ChIP followed by sequencing (ChIP-seq) in MCF-7 breast cancer cells treated with the proteasome inhibitor MG132, and we further explore genome-wide effects of proteasome inhibition on the chromatin state and RNA Pol II transcription. Analysis of gene expression programs and chromatin architecture reveals that chemically inhibiting proteasome activity creates a distinct chromatin state, defined by spreading of the H3K4me3 mark into the gene bodies of differentially-expressed genes. The distinct H3K4me3 chromatin profile and hyperacetylated nucleosomes at transcription start sites establish a chromatin landscape that facilitates recruitment of Ser-5- and Ser-2-phosphorylated RNA Pol II. Subsequent transcriptional events result in diverse gene expression changes. Alterations of H3K36me3 levels in the gene body reflect productive RNA Pol II elongation of transcripts of genes that are induced, underscoring the requirement for proteasome activity at multiple phases of the transcriptional cycle. Finally, by integrating genomics data and pathway analysis, we find that the differential effects of proteasome inhibition on the chromatin state modulate genes that are fundamental for cancer cell survival. Together, our results uncover underappreciated downstream effects of proteasome inhibitors that may underlie targeting of distinct chromatin states and key steps of RNA Pol II-mediated transcription in cancer cells.


Asunto(s)
Cromatina/metabolismo , Epigénesis Genética/efectos de los fármacos , Leupeptinas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , ARN Polimerasa II/metabolismo , Transcripción Genética/efectos de los fármacos , Acetilación , Cromatina/efectos de los fármacos , Cromatina/genética , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina , Regulación Neoplásica de la Expresión Génica/genética , Histonas/metabolismo , Humanos , Células MCF-7 , Nucleosomas/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/genética , Dominios Proteicos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sitio de Iniciación de la Transcripción/efectos de los fármacos
19.
Br J Nutr ; : 1-21, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34823615

RESUMEN

A Mediterranean-style eating pattern (MED-EP) may include moderate red meat intake. However, it is unknown if the pro-atherogenic metabolite trimethylamine N-oxide (TMAO) is affected by the amount of red meat consumed with a MED-EP. The results presented are from a secondary, retrospective objective of an investigator-blinded, randomized, crossover, controlled feeding trial (two 5-wk interventions separated by a 4-wk washout) to determine if a MED-EP with 200g unprocessed lean red meat/wk (MED-CONTROL) reduces circulating TMAO concentrations compared to a MED-EP with 500g unprocessed lean red meat/wk (MED-RED). Participants were 27 women and 12 men (n=39 total) who were either overweight or obese (BMI: 30.5 ± 0.3 kg/m2 mean ± SEM). Serum samples were obtained following an overnight fast both before (pre) and after (post) each intervention. Fasting serum TMAO, choline, carnitine, and betaine concentrations were measured using a targeted Liquid chromatography-mass spectrometry. Data were analyzed to assess if (a) TMAO and related metabolites differed by intervention, and (b) if changes in TMAO were associated with changes in Framingham 10-year risk score. Serum TMAO was lower post-intervention following MED-CONTROL compared to MED-RED intervention (post-MED-CONTROL 3.1 ± 0.2 µM vs. post-MED-RED 5.0 ± 0.5 µM, p<0.001), and decreased following MED-CONTROL (pre- vs post-MED-CONTROL, p = 0.025). Exploratory analysis using mixed model analysis of covariance identified a positive association between changes in TMAO and changes in HOMA-IR (p = 0.036). These results suggest that lower amounts of red meat intake leads to lower TMAO concentrations in the context of a MED-EP.

20.
Inorg Chem ; 60(8): 5432-5435, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33779143

RESUMEN

The metal binding motif of all nitrile hydratases (NHases, EC 4.2.1.84) is highly conserved (CXXCSCX) in the α-subunit. Accordingly, an eight amino acid peptide (VCTLCSCY), based on the metal binding motif of the Co-type NHase from Pseudonocardia thermophilia (PtNHase), was synthesized and shown to coordinate Fe(II) under anaerobic conditions. Parallel-mode EPR data on the mononuclear Fe(II)-peptide complex confirmed an integer-spin signal at g' ∼ 9, indicating an S = 2 system with unusually small axial ZFS, D = 0.29 cm-1 Exposure to air yielded a transient high-spin EPR signal most consistent with an intermediate/admixed S = 3/2 spin state, while the integer-spin signal was extinguished. Prolonged exposure to air resulted in the observation of EPR signals at g = 2.04, 2.16, and 2.20, consistent with the formation of a low-spin Fe(III)-peptide complex with electronic and structural similarity to the NHase from Rhodococcus equi TG328-2 (ReNHase). Coupled with MS data, these data support a progression for iron oxidation in NHases that proceeds from a reduced high spin to an oxidized high spin followed by formation of an oxidized low-spin iron center, something that heretofore has not been observed.


Asunto(s)
Compuestos Férricos/metabolismo , Hidroliasas/metabolismo , Sitios de Unión , Compuestos Férricos/química , Hidroliasas/química , Estructura Molecular , Pseudonocardia/enzimología , Rhodococcus equi/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA