Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nat Rev Mol Cell Biol ; 23(12): 817-835, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35804199

RESUMEN

Mitochondrial energetic adaptations encompass a plethora of conserved processes that maintain cell and organismal fitness and survival in the changing environment by adjusting the respiratory capacity of mitochondria. These mitochondrial responses are governed by general principles of regulatory biology exemplified by changes in gene expression, protein translation, protein complex formation, transmembrane transport, enzymatic activities and metabolite levels. These changes can promote mitochondrial biogenesis and membrane dynamics that in turn support mitochondrial respiration. The main regulatory components of mitochondrial energetic adaptation include: the transcription coactivator peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC1α) and associated transcription factors; mTOR and endoplasmic reticulum stress signalling; TOM70-dependent mitochondrial protein import; the cristae remodelling factors, including mitochondrial contact site and cristae organizing system (MICOS) and OPA1; lipid remodelling; and the assembly and metabolite-dependent regulation of respiratory complexes. These adaptive molecular and structural mechanisms increase respiration to maintain basic processes specific to cell types and tissues. Failure to execute these regulatory responses causes cell damage and inflammation or senescence, compromising cell survival and the ability to adapt to energetically demanding conditions. Thus, mitochondrial adaptive cellular processes are important for physiological responses, including to nutrient availability, temperature and physical activity, and their failure leads to diseases associated with mitochondrial dysfunction such as metabolic and age-associated diseases and cancer.


Asunto(s)
Adaptación Fisiológica , Mitocondrias , Mitocondrias/metabolismo , Adaptación Fisiológica/fisiología , Membranas Mitocondriales/metabolismo , Factores de Transcripción/metabolismo , Transducción de Señal , Proteínas Mitocondriales/genética
2.
EMBO Rep ; 24(12): e57228, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37818824

RESUMEN

Mitochondrial diseases are a group of disorders defined by defects in oxidative phosphorylation caused by nuclear- or mitochondrial-encoded gene mutations. A main cellular phenotype of mitochondrial disease mutations is redox imbalances and inflammatory signaling underlying pathogenic signatures of these patients. One method to rescue this cell death vulnerability is the inhibition of mitochondrial translation using tetracyclines. However, the mechanisms whereby tetracyclines promote cell survival are unknown. Here, we show that tetracyclines inhibit the mitochondrial ribosome and promote survival through suppression of endoplasmic reticulum (ER) stress. Tetracyclines increase mitochondrial levels of the mitoribosome quality control factor MALSU1 (Mitochondrial Assembly of Ribosomal Large Subunit 1) and promote its recruitment to the mitoribosome large subunit, where MALSU1 is necessary for tetracycline-induced survival and suppression of ER stress. Glucose starvation induces ER stress to activate the unfolded protein response and IRE1α-mediated cell death that is inhibited by tetracyclines. These studies establish a new interorganelle communication whereby inhibition of the mitoribosome signals to the ER to promote survival, implicating basic mechanisms of cell survival and treatment of mitochondrial diseases.


Asunto(s)
Enfermedades Mitocondriales , Ribosomas Mitocondriales , Humanos , Ribosomas Mitocondriales/metabolismo , Ribosomas Mitocondriales/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Supervivencia Celular , Tetraciclinas/farmacología , Tetraciclinas/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Estrés del Retículo Endoplásmico/genética , Enfermedades Mitocondriales/genética
3.
Nat Chem Biol ; 17(6): 703-710, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33723432

RESUMEN

The protein complexes of the mitochondrial electron transport chain exist in isolation and in higher order assemblies termed supercomplexes (SCs) or respirasomes (SC I+III2+IV). The association of complexes I, III and IV into the respirasome is regulated by unknown mechanisms. Here, we designed a nanoluciferase complementation reporter for complex III and IV proximity to determine in vivo respirasome levels. In a chemical screen, we found that inhibitors of the de novo pyrimidine synthesis enzyme dihydroorotate dehydrogenase (DHODH) potently increased respirasome assembly and activity. By-passing DHODH inhibition via uridine supplementation decreases SC assembly by altering mitochondrial phospholipid composition, specifically elevated peroxisomal-derived ether phospholipids. Cell growth rates upon DHODH inhibition depend on ether lipid synthesis and SC assembly. These data reveal that nucleotide pools signal to peroxisomes to modulate synthesis and transport of ether phospholipids to mitochondria for SC assembly, which are necessary for optimal cell growth in conditions of nucleotide limitation.


Asunto(s)
Transporte de Electrón , Nucleótidos/química , Peroxisomas/química , Fosfolípidos/química , Dihidroorotato Deshidrogenasa , Transporte de Electrón/genética , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lípidos/biosíntesis , Metabolómica , Mitocondrias/metabolismo , Estructura Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Consumo de Oxígeno , Éteres Fosfolípidos , Uridina/metabolismo
4.
PLoS Genet ; 13(3): e1006695, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28355222

RESUMEN

Mitochondrial dysfunction can increase oxidative stress and extend lifespan in Caenorhabditis elegans. Homeostatic mechanisms exist to cope with disruptions to mitochondrial function that promote cellular health and organismal longevity. Previously, we determined that decreased expression of the cytosolic pentose phosphate pathway (PPP) enzyme transaldolase activates the mitochondrial unfolded protein response (UPRmt) and extends lifespan. Here we report that transaldolase (tald-1) deficiency impairs mitochondrial function in vivo, as evidenced by altered mitochondrial morphology, decreased respiration, and increased cellular H2O2 levels. Lifespan extension from knockdown of tald-1 is associated with an oxidative stress response involving p38 and c-Jun N-terminal kinase (JNK) MAPKs and a starvation-like response regulated by the transcription factor EB (TFEB) homolog HLH-30. The latter response promotes autophagy and increases expression of the flavin-containing monooxygenase 2 (fmo-2). We conclude that cytosolic redox established through the PPP is a key regulator of mitochondrial function and defines a new mechanism for mitochondrial regulation of longevity.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Longevidad/genética , Oxigenasas/genética , Transaldolasa/genética , Envejecimiento/genética , Envejecimiento/patología , Animales , Autofagia/genética , Caenorhabditis elegans/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Peróxido de Hidrógeno/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/biosíntesis , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Mitocondrias/genética , Mitocondrias/patología , Estrés Oxidativo/efectos de los fármacos , Oxigenasas/biosíntesis , Inanición , Transaldolasa/antagonistas & inhibidores , Respuesta de Proteína Desplegada/genética , Proteínas Quinasas p38 Activadas por Mitógenos/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/genética
5.
Proc Natl Acad Sci U S A ; 108(12): 5003-8, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21383194

RESUMEN

MicroRNAs (miRNAs) circulate in the bloodstream in a highly stable, extracellular form and are being developed as blood-based biomarkers for cancer and other diseases. However, the mechanism underlying their remarkable stability in the RNase-rich environment of blood is not well understood. The current model in the literature posits that circulating miRNAs are protected by encapsulation in membrane-bound vesicles such as exosomes, but this has not been systematically studied. We used differential centrifugation and size-exclusion chromatography as orthogonal approaches to characterize circulating miRNA complexes in human plasma and serum. We found, surprisingly, that the majority of circulating miRNAs cofractionated with protein complexes rather than with vesicles. miRNAs were also sensitive to protease treatment of plasma, indicating that protein complexes protect circulating miRNAs from plasma RNases. Further characterization revealed that Argonaute2 (Ago2), the key effector protein of miRNA-mediated silencing, was present in human plasma and eluted with plasma miRNAs in size-exclusion chromatography. Furthermore, immunoprecipitation of Ago2 from plasma readily recovered non-vesicle-associated plasma miRNAs. The majority of miRNAs studied copurified with the Ago2 ribonucleoprotein complex, but a minority of specific miRNAs associated predominantly with vesicles. Our results reveal two populations of circulating miRNAs and suggest that circulating Ago2 complexes are a mechanism responsible for the stability of plasma miRNAs. Our study has important implications for the development of biomarker approaches based on capture and analysis of circulating miRNAs. In addition, identification of extracellular Ago2-miRNA complexes in plasma raises the possibility that cells release a functional miRNA-induced silencing complex into the circulation.


Asunto(s)
Factor 2 Eucariótico de Iniciación/sangre , MicroARNs/sangre , Plasma/metabolismo , Ribonucleoproteínas/sangre , Proteínas Argonautas , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/aislamiento & purificación , Humanos , MicroARNs/química , MicroARNs/aislamiento & purificación , Plasma/química , Ribonucleoproteínas/química , Ribonucleoproteínas/aislamiento & purificación
6.
bioRxiv ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38293190

RESUMEN

In response to cold, mammals activate brown fat for respiratory-dependent thermogenesis reliant on the electron transport chain (1, 2). Yet, the structural basis of respiratory complex adaptation to cold remains elusive. Herein we combined thermoregulatory physiology and cryo-EM to study endogenous respiratory supercomplexes exposed to different temperatures. A cold-induced conformation of CI:III 2 (termed type 2) was identified with a ∼25° rotation of CIII 2 around its inter-dimer axis, shortening inter-complex Q exchange space, and exhibiting different catalytic states which favor electron transfer. Large-scale supercomplex simulations in lipid membrane reveal how unique lipid-protein arrangements stabilize type 2 complexes to enhance catalytic activity. Together, our cryo-EM studies, multiscale simulations and biochemical analyses unveil the mechanisms and dynamics of respiratory adaptation at the structural and energetic level.

7.
bioRxiv ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36945631

RESUMEN

Mitochondrial diseases are a group of disorders defined by defects in oxidative phosphorylation caused by nuclear- or mitochondrial-encoded gene mutations. A main cellular phenotype of mitochondrial disease mutations are redox imbalances and inflammatory signaling underlying pathogenic signatures of these patients. Depending on the type of mitochondrial mutation, certain mechanisms can efficiently rescue cell death vulnerability. One method is the inhibition of mitochondrial translation elongation using tetracyclines, potent suppressors of cell death in mitochondrial disease mutant cells. However, the mechanisms whereby tetracyclines promote cell survival are unknown. Here, we show that in mitochondrial mutant disease cells, tetracycline-mediated inhibition of mitoribosome elongation promotes survival through suppression of the ER stress IRE1α protein. Tetracyclines increased levels of the splitting factor MALSU1 (Mitochondrial Assembly of Ribosomal Large Subunit 1) at the mitochondria with recruitment to the mitochondrial ribosome (mitoribosome) large subunit. MALSU1, but not other quality control factors, was required for tetracycline-induced cell survival in mitochondrial disease mutant cells during glucose starvation. In these cells, nutrient stress induced cell death through IRE1α activation associated with a strong protein loading in the ER lumen. Notably, tetracyclines rescued cell death through suppression of IRE1α oligomerization and activity. Consistent with MALSU1 requirement, MALSU1 deficient mitochondrial mutant cells were sensitive to glucose-deprivation and exhibited increased ER stress and activation of IRE1α that was not reversed by tetracyclines. These studies show that inhibition of mitoribosome elongation signals to the ER to promote survival, establishing a new interorganelle communication between the mitoribosome and ER with implications in basic mechanisms of cell survival and treatment of mitochondrial diseases.

8.
Cell Metab ; 35(8): 1356-1372.e5, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37473754

RESUMEN

Liver mitochondria undergo architectural remodeling that maintains energy homeostasis in response to feeding and fasting. However, the specific components and molecular mechanisms driving these changes and their impact on energy metabolism remain unclear. Through comparative mouse proteomics, we found that fasting induces strain-specific mitochondrial cristae formation in the liver by upregulating MIC19, a subunit of the MICOS complex. Enforced MIC19 expression in the liver promotes cristae formation, mitochondrial respiration, and fatty acid oxidation while suppressing gluconeogenesis. Mice overexpressing hepatic MIC19 show resistance to diet-induced obesity and improved glucose homeostasis. Interestingly, MIC19 overexpressing mice exhibit elevated energy expenditure and increased pedestrian locomotion. Metabolite profiling revealed that uracil accumulates in the livers of these mice due to increased uridine phosphorylase UPP2 activity. Furthermore, uracil-supplemented diet increases locomotion in wild-type mice. Thus, MIC19-induced mitochondrial cristae formation in the liver increases uracil as a signal to promote locomotion, with protective effects against diet-induced obesity.


Asunto(s)
Metabolismo Energético , Hígado , Caminata , Mitocondrias Hepáticas/metabolismo , Hígado/metabolismo , Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo , Animales , Ratones , Dieta Alta en Grasa , Aumento de Peso , Uracilo/metabolismo
9.
J Biol Chem ; 286(31): 27111-22, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21659537

RESUMEN

The mammalian target of rapamycin complex 1 (mTORC1) links the control of mRNA translation, cell growth, and metabolism to diverse stimuli. Inappropriate activation of mTORC1 can lead to cancer. Phorbol esters are naturally occurring products that act as potent tumor promoters. They activate isoforms of protein kinase C (PKCs) and stimulate the oncogenic MEK/ERK signaling cascade. They also activate mTORC1 signaling. Previous work indicated that mTORC1 activation by the phorbol ester PMA (phorbol 12-myristate 13-acetate) depends upon PKCs and may involve MEK. However, the precise mechanism(s) through which they activate mTORC1 remains unclear. Recent studies have implicated both the ERKs and the ERK-activated 90-kDa ribosomal S6 kinases (p90(RSK)) in activating mTORC1 signaling via phosphorylation of TSC2 (a regulator of mTORC1) and/or the mTORC1 component raptor. However, the relative importance of each of these kinases and phosphorylation events for the activation of mTORC1 signaling is unknown. The recent availability of MEK (PD184352) and p90(RSK) (BI-D1870) inhibitors of improved specificity allowed us to address the roles of these protein kinases in controlling mTORC1 in a variety of human and rodent cell types. In parallel, we used specific shRNAs against p90(RSK1) and p90(RSK2) to further test their roles in regulating mTORC1 signaling. Our data indicate that p90(RSKs) are dispensable for the activation of mTORC1 signaling by phorbol esters in all cell types tested. Our data also reveal striking diversity in the requirements for MEK/ERK in the control of mTORC1 between different cell types, pointing to additional signaling connections between phorbol esters and mTORC1, which do not involve MEK/ERK. This study provides important information for the design of efficient strategies to combat the hyperactivation of mTORC1 signaling by oncogenic pathways.


Asunto(s)
Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Factores de Transcripción/metabolismo , Animales , Línea Celular , Humanos , Ratones , Células 3T3 NIH , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/efectos de los fármacos , Pteridinas/farmacología , Ratas , Ratas Sprague-Dawley
10.
Curr Genomics ; 13(7): 508-18, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23633911

RESUMEN

Progress in aging research has identified genetic and environmental factors that regulate longevity across species. The nematode worm Caenorhabditis elegans is a genetically tractable model system that has been widely used to investigate the molecular mechanisms of aging, and the development of RNA interference (RNAi) technology has provided a powerful tool for performing large-scale genetic screens in this organism. Genome-wide screens have identified hundreds of genes that influence lifespan, many of which fall into distinct functional classes and pathways. The purpose of this review is to summarize the results of large-scale RNAi longevity screens in C. elegans, and to provide an in-depth comparison and analysis of their methodology and most significant findings.

11.
FEBS J ; 289(22): 6969-6993, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34510753

RESUMEN

Mitochondrial dysfunction is increasingly appreciated as a central contributor to human disease. Oxidative metabolism at the mitochondrial respiratory chain produces ATP and is intricately tied to redox homeostasis and biosynthetic pathways. Metabolic stress arising from genetic mutations in mitochondrial genes and environmental factors such as malnutrition or overnutrition is perceived by the cell and leads to adaptive and maladaptive responses that can underlie pathology. Here, we will outline cellular sensors that react to alterations in energy production, organellar redox, and metabolites stemming from mitochondrial disease (MD) mutations. MD is a heterogeneous group of disorders primarily defined by defects in mitochondrial oxidative phosphorylation from nuclear or mitochondrial-encoded gene mutations. Preclinical therapies that improve fitness of MD mouse models have been recently identified. Targeting metabolic/energetic deficiencies, maladaptive signaling processes, and hyper-oxygenation of tissues are all strategies aside from direct genetic approaches that hold therapeutic promise. A further mechanistic understanding of these curative processes as well as the identification of novel targets will significantly impact mitochondrial biology and disease research.


Asunto(s)
Enfermedades Mitocondriales , Estrés Oxidativo , Humanos , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Metabolismo Energético/genética , Oxidación-Reducción , Enfermedades Mitocondriales/metabolismo
12.
Cell Metab ; 33(3): 598-614.e7, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33592173

RESUMEN

The architecture of cristae provides a spatial mitochondrial organization that contains functional respiratory complexes. Several protein components including OPA1 and MICOS complex subunits organize cristae structure, but upstream regulatory mechanisms are largely unknown. Here, in vivo and in vitro reconstitution experiments show that the endoplasmic reticulum (ER) kinase PERK promotes cristae formation by increasing TOM70-assisted mitochondrial import of MIC19, a critical subunit of the MICOS complex. Cold stress or ß-adrenergic stimulation activates PERK that phosphorylates O-linked N-acetylglucosamine transferase (OGT). Phosphorylated OGT glycosylates TOM70 on Ser94, enhancing MIC19 protein import into mitochondria and promoting cristae formation and respiration. In addition, PERK-activated OGT O-GlcNAcylates and attenuates CK2α activity, which mediates TOM70 Ser94 phosphorylation and decreases MIC19 mitochondrial protein import. We have identified a cold-stress inter-organelle PERK-OGT-TOM70 axis that increases cell respiration through mitochondrial protein import and subsequent cristae formation. These studies have significant implications in cellular bioenergetics and adaptations to stress conditions.


Asunto(s)
Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , eIF-2 Quinasa/metabolismo , Adipocitos Marrones/citología , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Animales , Quinasa de la Caseína II/metabolismo , Frío , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Glicosilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/genética , Proteínas Mitocondriales/genética , N-Acetilglucosaminiltransferasas/genética , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , ARN Guía de Kinetoplastida/metabolismo , eIF-2 Quinasa/antagonistas & inhibidores , eIF-2 Quinasa/deficiencia , eIF-2 Quinasa/genética
13.
Nat Metab ; 3(1): 33-42, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33462515

RESUMEN

Mitochondrial diseases (MDs) are a heterogeneous group of disorders resulting from mutations in nuclear or mitochondrial DNA genes encoding mitochondrial proteins1,2. MDs cause pathologies with severe tissue damage and ultimately death3,4. There are no cures for MDs and current treatments are only palliative5-7. Here we show that tetracyclines improve fitness of cultured MD cells and ameliorate disease in a mouse model of Leigh syndrome. To identify small molecules that prevent cellular damage and death under nutrient stress conditions, we conduct a chemical high-throughput screen with cells carrying human MD mutations and discover a series of antibiotics that maintain survival of various MD cells. We subsequently show that a sub-library of tetracycline analogues, including doxycycline, rescues cell death and inflammatory signatures in mutant cells through partial and selective inhibition of mitochondrial translation, resulting in an ATF4-independent mitohormetic response. Doxycycline treatment strongly promotes fitness and survival of Ndufs4-/- mice, a preclinical Leigh syndrome mouse model8. A proteomic analysis of brain tissue reveals that doxycycline treatment largely prevents neuronal death and the accumulation of neuroimmune and inflammatory proteins in Ndufs4-/- mice, indicating a potential causal role for these proteins in the brain pathology. Our findings suggest that tetracyclines deserve further evaluation as potential drugs for the treatment of MDs.


Asunto(s)
Antibacterianos/uso terapéutico , Enfermedades Mitocondriales/tratamiento farmacológico , Tetraciclinas/uso terapéutico , Factor de Transcripción Activador 4/metabolismo , Animales , Encéfalo/patología , Células Cultivadas , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Enfermedad de Leigh/tratamiento farmacológico , Enfermedad de Leigh/patología , Esperanza de Vida , Metabolómica , Ratones , Ratones Noqueados , Enfermedades Mitocondriales/mortalidad , Enfermedades Mitocondriales/patología , Aptitud Física , Análisis de Supervivencia
14.
Nat Commun ; 11(1): 2714, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483148

RESUMEN

Electron transport chain (ETC) defects occurring from mitochondrial disease mutations compromise ATP synthesis and render cells vulnerable to nutrient and oxidative stress conditions. This bioenergetic failure is thought to underlie pathologies associated with mitochondrial diseases. However, the precise metabolic processes resulting from a defective mitochondrial ETC that compromise cell viability under stress conditions are not entirely understood. We design a whole genome gain-of-function CRISPR activation screen using human mitochondrial disease complex I (CI) mutant cells to identify genes whose increased function rescue glucose restriction-induced cell death. The top hit of the screen is the cytosolic Malic Enzyme (ME1), that is sufficient to enable survival and proliferation of CI mutant cells under nutrient stress conditions. Unexpectedly, this metabolic rescue is independent of increased ATP synthesis through glycolysis or oxidative phosphorylation, but dependent on ME1-produced NADPH and glutathione (GSH). Survival upon nutrient stress or pentose phosphate pathway (PPP) inhibition depends on compensatory NADPH production through the mitochondrial one-carbon metabolism that is severely compromised in CI mutant cells. Importantly, this defective CI-dependent decrease in mitochondrial NADPH production pathway or genetic ablation of SHMT2 causes strong increases in inflammatory cytokine signatures associated with redox dependent induction of ASK1 and activation of stress kinases p38 and JNK. These studies find that a major defect of CI deficiencies is decreased mitochondrial one-carbon NADPH production that is associated with increased inflammation and cell death.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Inflamación/metabolismo , Enfermedades Mitocondriales/metabolismo , Mutación , NADP/metabolismo , Animales , Muerte Celular/genética , Línea Celular , Supervivencia Celular/genética , Complejo I de Transporte de Electrón/genética , Metabolismo Energético/genética , Glucólisis/genética , Humanos , Inflamación/genética , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Fosforilación Oxidativa , Vía de Pentosa Fosfato/genética
15.
Transl Med Aging ; 3: 64-69, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32190786

RESUMEN

The antibiotic diaminodiphenyl sulfone (DDS) is used in combination with other antibiotics as a first line treatment for leprosy. DDS has been previously reported to extend lifespan in Caenorhabditis elegans through inhibition of pyruvate kinase and decreased mitochondrial function. Here we report an alternative mechanism of action by which DDS promotes longevity in C. elegans by reducing folate production by the microbiome. This results in altered methionine cycle metabolite levels mimicking the effects of metformin and lifespan extension that is dependent on the starvation- and hypoxia-induced flavin containing monoxygenase, FMO-2.

16.
Artículo en Inglés | MEDLINE | ID: mdl-26525455

RESUMEN

The mechanisms underlying biological aging have been extensively studied in the past 20 years with the avail of mainly four model organisms: the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, the fruitfly Drosophila melanogaster, and the domestic mouse Mus musculus. Extensive research in these four model organisms has identified a few conserved genetic pathways that affect longevity as well as metabolism and development. Here, we review how the mechanistic target of rapamycin (mTOR), sirtuins, adenosine monophosphate-activated protein kinase (AMPK), growth hormone/insulin-like growth factor 1 (IGF-1), and mitochondrial stress-signaling pathways influence aging and life span in the aforementioned models and their possible implications for delaying aging in humans. We also draw some connections between these biochemical pathways and comment on what new developments aging research will likely bring in the near future.


Asunto(s)
Envejecimiento/genética , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Ratones/genética , Saccharomyces cerevisiae/genética , Envejecimiento/fisiología , Animales , Caenorhabditis elegans/fisiología , Drosophila melanogaster/fisiología , Longevidad/genética , Longevidad/fisiología , Ratones/fisiología , Modelos Biológicos , Saccharomyces cerevisiae/fisiología
17.
Cell Metab ; 22(5): 895-906, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26456335

RESUMEN

Many genes that affect replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae also affect aging in other organisms such as C. elegans and M. musculus. We performed a systematic analysis of yeast RLS in a set of 4,698 viable single-gene deletion strains. Multiple functional gene clusters were identified, and full genome-to-genome comparison demonstrated a significant conservation in longevity pathways between yeast and C. elegans. Among the mechanisms of aging identified, deletion of tRNA exporter LOS1 robustly extended lifespan. Dietary restriction (DR) and inhibition of mechanistic Target of Rapamycin (mTOR) exclude Los1 from the nucleus in a Rad53-dependent manner. Moreover, lifespan extension from deletion of LOS1 is nonadditive with DR or mTOR inhibition, and results in Gcn4 transcription factor activation. Thus, the DNA damage response and mTOR converge on Los1-mediated nuclear tRNA export to regulate Gcn4 activity and aging.


Asunto(s)
Envejecimiento/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Longevidad/genética , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Saccharomyces cerevisiae/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Caenorhabditis elegans/genética , Restricción Calórica , Daño del ADN/genética , Eliminación de Gen , Regulación de la Expresión Génica/genética , Genoma , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética
18.
Exp Gerontol ; 56: 142-6, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24518875

RESUMEN

The mitochondrial unfolded protein response is a conserved pathway that allows mitochondrial chaperones and other factors to be induced in response to mitochondrial dysfunction. Activation of this pathway has been proposed to underlie lifespan extension from knockdown or mutation of several nuclear encoded mitochondrial genes in Caenorhabditis elegans. In some cases, however, induction of the mitochondrial unfolded protein response is associated with a reduction of lifespan in both yeast and C. elegans. It also has yet to be demonstrated that induction of the mitochondrial unfolded protein response is sufficient to increase lifespan in the absence of overt mitochondrial dysfunction. In this perspective, we briefly review the evidence for and against a direct pro-longevity role of the mitochondrial unfolded protein response and suggest important areas of investigation for experimentally addressing this question.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Longevidad , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Respuesta de Proteína Desplegada , Factores de Edad , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Humanos , Proteínas Mitocondriales/genética , Modelos Animales , Transducción de Señal
19.
Worm ; 3(3): e959404, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26430544

RESUMEN

There is a growing list of examples where perturbed mitochondrial function is associated with increased longevity, yet the exact mechanisms have remained elusive. This phenomenon was first documented, and has been studied most extensively, in C. elegans. One prominent model proposed that lifespan extension resulting from electron transport chain inhibition is due to induction of the mitochondrial unfolded protein response. This model requires revision in light of recent data showing that the mitochondrial unfolded protein response, as defined by the field, is neither necessary nor sufficient for lifespan extension in C. elegans. Several additional factors have been proposed to underlie this lifespan extension, which is likely to be multifactorial and complex.

20.
Nat Commun ; 5: 3483, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24662282

RESUMEN

Recent studies have propagated the model that the mitochondrial unfolded protein response (UPR(mt)) is causal for lifespan extension from inhibition of the electron transport chain (ETC) in Caenorhabditis elegans. Here we report a genome-wide RNAi screen for negative regulators of the UPR(mt). Lifespan analysis of nineteen RNAi clones that induce the hsp-6p::gfp reporter demonstrate differential effects on longevity. Deletion of atfs-1, which is required for induction of the UPR(mt), fails to prevent lifespan extension from knockdown of two genes identified in our screen or following knockdown of the ETC gene cco-1. RNAi knockdown of atfs-1 also has no effect on lifespan extension caused by mutation of the ETC gene isp-1. Constitutive activation of the UPR(mt) by gain of function mutations in atfs-1 fails to extend lifespan. These observations identify several new factors that promote mitochondrial homoeostasis and demonstrate that the UPR(mt), as currently defined, is neither necessary nor sufficient for lifespan extension.


Asunto(s)
Caenorhabditis elegans/fisiología , Longevidad/fisiología , Mitocondrias/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA