Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39044651

RESUMEN

BACKGROUND: Coronary microvascular dysfunction (CMD) after percutaneous coronary intervention (PCI) is prognostically important and may also be a cause of persistent angina. The stent balloon inflation technique or material properties may influence the degree of CMD post-PCI. METHODS: Thirty-six patients with stable angina attending for elective PCI were randomized to either slow drug eluting stent (DES) implantation technique (DES slow group): +2 atm. every 5 s., maintained for a further 30 s or a standard stent implantation technique (DES std group): rapid inflation and deflation. PressureWire X with thermodilution at rest and hyperemia and optical coherence tomography (OCT) were performed pre- and post-PCI. Combined primary endpoints were changes in index of microvascular resistance (delta IMR) and coronary flow reserve (delta CFR) following PCI. The secondary endpoints included differences in cardiac troponin I (delta cTnI) at 6 h post-PCI, Seattle angina questionnaire (SAQ) at 1, 3, 6, and 12 months and OCT measures of stent results immediately post-PCI and at 3 months. RESULTS: Both groups were well matched, with similar baseline characteristics and OCT-defined plaque characteristics. Delta IMR was significantly better in the DES slow PCI arm with a median difference of -4.14 (95% CI -10.49, -0.39, p = 0.04). Delta CFR was also numerically higher with a median difference of 0.47 (95% CI -0.52, 1.31, p = 0.46). This did not translate to improved delta median cTnI (1.5 (34.8) vs. 0 (27.5) ng/L, p = 0.75) or median SAQ score at 3 months, (85 (20) vs. 95 (17.5), p = 0.47). CONCLUSION: Slow stent implantation is associated with less CMD after elective PCI in patients with stable angina.

2.
JCI Insight ; 9(5)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329807

RESUMEN

Inappropriate immune activity is key in the pathogenesis of multiple diseases, and it is typically driven by excess inflammation and/or autoimmunity. IL-1 is often the effector owing to its powerful role in both innate and adaptive immunity, and, thus, it is tightly controlled at multiple levels. IL-1R2 antagonizes IL-1, but effects of losing this regulation are unknown. We found that IL-1R2 resolves inflammation by rapidly scavenging free IL-1. Specific IL-1R2 loss in germinal center (GC) T follicular regulatory (Tfr) cells increased the GC response after a first, but not booster, immunization, with an increase in T follicular helper (Tfh) cells, GC B cells, and antigen-specific antibodies, which was reversed upon IL-1 blockade. However, IL-1 signaling is not obligate for GC reactions, as WT and Il1r1-/- mice showed equivalent phenotypes, suggesting that GC IL-1 is normally restrained by IL-1R2. Fascinatingly, germline Il1r2-/- mice did not show this phenotype, but conditional Il1r2 deletion in adulthood recapitulated it, implying that compensation during development counteracts IL-1R2 loss. Finally, patients with ulcerative colitis or Crohn's disease had lower serum IL-1R2. All together, we show that IL-1R2 controls important aspects of innate and adaptive immunity and that IL-1R2 level may contribute to human disease propensity and/or progression.


Asunto(s)
Receptores Tipo II de Interleucina-1 , Linfocitos T Colaboradores-Inductores , Humanos , Animales , Ratones , Centro Germinal , Inflamación , Interleucina-1
3.
Comput Methods Programs Biomed ; 254: 108271, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38878362

RESUMEN

BACKGROUND AND OBJECTIVE: Coronary plaque rupture is a precipitating event responsible for two thirds of myocardial infarctions. Currently, the risk of plaque rupture is computed based on demographic, clinical, and image-based adverse features. However, using these features the absolute event rate per single higher-risk lesion remains low. This work studies the power of a novel framework based on biomechanical markers accounting for material uncertainty to stratify vulnerable and non-vulnerable coronary plaques. METHODS: Virtual histology intravascular ultrasounds from 55 patients, 29 affected by acute coronary syndrome and 26 affected by stable angina pectoris, were included in this study. Two-dimensional vessel cross-sections for finite element modeling (10 sections per plaque) incorporating plaque structure (medial tissue, loose matrix, lipid core and calcification) were reconstructed. A Montecarlo finite element analysis was performed on each section to account for material variability on three biomechanical markers: peak plaque structural stress at diastolic and systolic pressure, and peak plaque stress difference between systolic and diastolic pressures, together with the luminal pressure. Machine learning decision tree classifiers were trained on 75% of the dataset and tested on the remaining 25% with a combination of feature selection techniques. Performance against classification trees based on geometric markers (i.e., luminal, external elastic membrane and plaque areas) was also performed. RESULTS: Our results indicate that the plaque structural stress outperforms the classification capacity of the combined geometric markers only (0.82 vs 0.51 area under curve) when accounting for uncertainty in material parameters. Furthermore, the results suggest that the combination of the peak plaque structural stress at diastolic and systolic pressures with the maximum plaque structural stress difference between systolic and diastolic pressures together with the systolic pressure and the diastolic to systolic pressure gradient is a robust classifier for coronary plaques when the intrinsic variability in material parameters is considered (area under curve equal to [0.91-0.93]). CONCLUSION: In summary, our results emphasize that peak plaque structural stress in combination with the patient's luminal pressure is a potential classifier of plaque vulnerability as it independently considers stress in all directions and incorporates total geometric and compositional features of atherosclerotic plaques.


Asunto(s)
Análisis de Elementos Finitos , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/fisiopatología , Masculino , Femenino , Fenómenos Biomecánicos , Aprendizaje Automático , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/fisiopatología , Anciano , Estrés Mecánico , Síndrome Coronario Agudo/diagnóstico por imagen , Síndrome Coronario Agudo/fisiopatología , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/fisiopatología , Ultrasonografía Intervencional
4.
Atherosclerosis ; 390: 117449, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262275

RESUMEN

BACKGROUND AND AIMS: Anatomical imaging alone of coronary atherosclerotic plaques is insufficient to identify risk of future adverse events and guide management of non-culprit lesions. Low endothelial shear stress (ESS) and high plaque structural stress (PSS) are associated with events, but individually their predictive value is insufficient for risk prediction. We determined whether combining multiple complementary, biomechanical and anatomical plaque characteristics improves outcome prediction sufficiently to inform clinical decision-making. METHODS: We examined baseline ESS, ESS gradient (ESSG), PSS, and PSS heterogeneity index (HI), and plaque burden in 22 lesions that developed subsequent events and 64 control lesions that remained quiescent from the PROSPECT study. RESULTS: 86 fibroatheromas were analysed from 67 patients. Lesions with events showed higher PSS HI (0.32 vs. 0.24, p<0.001), lower local ESS (0.56Pa vs. 0.91Pa, p = 0.007), and higher ESSG (3.82 Pa/mm vs. 1.96 Pa/mm, p = 0.007), while high PSS HI (hazard ratio [HR] 3.9, p = 0.006), high ESSG (HR 3.4, p = 0.007) and plaque burden>70 % (HR 2.6, p = 0.02) were independent outcome predictors in multivariate analysis. Combining low ESS, high ESSG, and high PSS HI gave both high positive predictive value (80 %), which increased further combined with plaque burden>70 %, and negative predictive value (81.6 %). Low ESS, high ESSG, and high PSS HI co-localised spatially within 1 mm in lesions with events, and importantly, this cluster was distant from the minimum lumen area site. CONCLUSIONS: Combining complementary biomechanical and anatomical metrics significantly improves risk-stratification of individual coronary lesions. If confirmed from larger prospective studies, our results may inform targeted revascularisation vs. conservative management strategies.


Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/complicaciones , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/terapia , Enfermedad de la Arteria Coronaria/complicaciones , Estudios Prospectivos , Factores de Riesgo , Vasos Coronarios/diagnóstico por imagen , Ultrasonografía Intervencional/métodos , Toma de Decisiones Clínicas , Valor Predictivo de las Pruebas , Angiografía Coronaria/métodos
5.
Eur Heart J Cardiovasc Imaging ; 25(7): 1018-1027, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38493483

RESUMEN

AIMS: To assess pericoronary adipose tissue (PCAT) density on coronary computed tomography angiography (CCTA) as a marker of inflammatory disease activity in coronary allograft vasculopathy (CAV). METHODS AND RESULTS: PCAT density, lesion volumes, and total vessel volume-to-myocardial mass ratio (V/M) were retrospectively measured in 126 CCTAs from 94 heart transplant patients [mean age 49 (SD 14.5) years, 40% female] who underwent imaging between 2010 and 2021; age- and sex-matched controls; and patients with atherosclerosis. PCAT density was higher in transplant patients with CAV [n = 40; -73.0 HU (SD 9.3)] than without CAV [n = 86; -77.9 HU (SD 8.2)], and controls [n = 12; -86.2 HU (SD 5.4)], P < 0.01 for both. Unlike patients with atherosclerotic coronary artery disease (n = 32), CAV lesions were predominantly non-calcified and comprised of mostly fibrous or fibrofatty tissue. V/M was lower in patients with CAV than without [32.4 mm3/g (SD 9.7) vs. 41.4 mm3/g (SD 12.3), P < 0.0001]. PCAT density and V/M improved the ability to predict CAV from area under the receiver operating characteristic curve (AUC) 0.75-0.85 when added to donor age and donor hypertension status (P < 0.0001). PCAT density above -66 HU was associated with a greater incidence of all-cause mortality {odds ratio [OR] 18.0 [95% confidence interval (CI) 3.25-99.6], P < 0.01} and the composite endpoint of death, CAV progression, acute rejection, and coronary revascularization [OR 7.47 (95% CI 1.8-31.6), P = 0.01] over 5.3 (SD 2.1) years. CONCLUSION: Heart transplant patients with CAV have higher PCAT density and lower V/M than those without. Increased PCAT density is associated with adverse clinical outcomes. These CCTA metrics could be useful for the diagnosis and monitoring of CAV severity.


Asunto(s)
Tejido Adiposo , Angiografía por Tomografía Computarizada , Enfermedad de la Arteria Coronaria , Trasplante de Corazón , Humanos , Femenino , Masculino , Persona de Mediana Edad , Tejido Adiposo/diagnóstico por imagen , Trasplante de Corazón/efectos adversos , Estudios Retrospectivos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/cirugía , Angiografía por Tomografía Computarizada/métodos , Angiografía Coronaria , Adulto , Valor Predictivo de las Pruebas , Estudios de Casos y Controles , Aloinjertos , Medición de Riesgo , Complicaciones Posoperatorias/diagnóstico por imagen , Tejido Adiposo Epicárdico
6.
Nat Cardiovasc Res ; 3(6): 714-733, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38898928

RESUMEN

Aberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs. We compared gene regulatory network rewiring between injury-responsive and nonresponsive VSMCs, which suggested shared transcription factors but differing target loci between VSMC states. Through in silico perturbation analysis, we identified and prioritized previously unrecognized regulators of proliferation, including RUNX1 and TIMP1. Moreover, we showed that the pioneer transcription factor RUNX1 increased VSMC responsiveness and that TIMP1 feeds back to promote VSMC proliferation through CD74-mediated STAT3 signaling. Both RUNX1 and the TIMP1-CD74 axis were expressed in human VSMCs, showing low levels in normal arteries and increased expression in disease, suggesting clinical relevance and potential as vascular disease targets.

7.
Cardiovasc Res ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073768

RESUMEN

AIMS: While acute cardiovascular complications of COVID-19 are well-described, less is known about longer-term cardiac sequelae. For many individuals with cardiac signs or symptoms arising after COVID-19 infection, the aetiology remains unclear. We examined immune profiles associated with magnetic resonance imaging (MRI) abnormalities in patients with unexplained cardiac injury after COVID-19. METHODS AND RESULTS: Twenty-one participants (mean age 47 [SD 13] years, 71% female) with long COVID (n=17), raised troponin (n=2), or unexplained new-onset heart failure (n=2), who did not have pre-existing heart conditions or recent steroid/immunosuppression treatment were enrolled a mean 346 (SD 191) days after COVID-19 infection in a prospective observational study. Cardiac MRI and blood sampling for deep immunophenotyping using mass cytometry by time of flight and measurement of proteomic inflammatory markers was performed. Nine of 21 (43%) participants had MRI abnormalities (MRI(+)), including non-ischaemic patterns of late gadolinium enhancement and/or visually overt myocardial oedema in 8 people. One patient had mildly impaired biventricular function without fibrosis or oedema, and 2 had severe left ventricular impairment. MRI(+) individuals had higher blood CCL3, CCL7, FGF-23 and CD4 Th2 cells, and lower CD8 T effector memory (TEM) cells, than MRI(-). Cluster analysis revealed lower expression of inhibitory receptors PD1 and TIM3 in CD8 TEM cells from MRI(+) patients than MRI(-) patients, and functional studies of CD8 T αß cells showed higher proportions of cytotoxic granzyme B+ secreting cells upon stimulation. CD8 TEM cells and CCL7 were the strongest predictors of MRI abnormalities in a LASSO regression model (composite AUC 0.96, 95%CI 0.88-1.0). CCL7 was correlated with diffuse myocardial fibrosis/oedema detected by quantitative T1 mapping (r=0.47, p=0.04). CONCLUSION: COVID-19 related cardiac injury in symptomatic patients with non-ischaemic myocarditis-like MRI abnormalities is associated with immune dysregulation, including decreased peripheral CD8 TEM cells and increased CCL7, persisting long after the initial infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA