Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 194(7): 482, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35668330

RESUMEN

Bananas are a worldwide cultivated crop and one of the main agricultural activities in Brazil. The banana orchards cultivated in the region of São Paulo State are under native areas of the Atlantic Forest biome. The Atlantic Forest has suffered agricultural and urban pressure for many years. Banana crops require soil management and superficial vegetation removal in the first cycles. We conducted a study aiming to understand the impact of long-standing banana cultivation in the Atlantic forest region. Soil samples in banana plantations (EBP) and forest remnants (FR) were collected from trenches with 0- to 100-cm layers. The soil bulk density in EBP until 30-cm depth was 12.76% higher than that in FR. Quantifications of macropores and micropores in FR reached values higher than those in EBP. The results showed that carbon stocks decreased from the top to the deeper layers. Thirty years after the conversion, the FR treatment accumulated 28.23% more carbon than EBP. Considering our results, it was evident that changes in physical and chemical properties reflected the negative impacts of the banana plantations, cropped through conventional management, when converted from forest even in regard to a remnant one. These findings, showed for the first time, lead us to understand the soil management of banana plantations, following conventional agriculture systems, as a potential carbon stock reducer and a factor resulting in the loss of soil quality in the region. Additionally, our data can be used by environmentalists and government policymakers to promote environmental sustainability.


Asunto(s)
Musa , Suelo , Agricultura , Brasil , Carbono/análisis , Monitoreo del Ambiente , Bosques , Suelo/química
2.
J Environ Manage ; 234: 326-335, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30639856

RESUMEN

The use of organic amendments is important for the sustainability of organic farming, with implications for soil organic matter turnover, nutrient cycling and greenhouse gases (GHGs) emissions to the atmosphere. Here, we investigated how long-term citrus organic farming influenced carbon sequestration and GHG emissions under organic and conventional management. We assessed the effects of management systems on soil organic matter dynamics and GHG emissions, focusing on N2O direct emissions from fertilizers. Soil stable isotope C and N compositions (0-100 cm) were used as parameters to assess changes in soil organic matter dynamics, with native forest as the reference. After the conversion from forest to orange orchard, stocks of soil C increased approximately 40 Mg ha-1, whereas stocks were similar in the organic and conventional treatments. Enrichment of 13C through the entire soil profile showed that organic matter from fertilizer replaced the original soil C by at least 20%, considering that poultry was fed only with C4 plants. By contrast, organic farming increased soil N stocks and inorganic N. Nitrogen emission factors for inorganic and organic fertilizers were 1.47 and 3.14, respectively. Organic management increased soil GHG emissions, primarily N2O emissions. Carbon emissions either as CO2 or CH4 were greater at the mid-rows than those under the crop canopy. We conclude that organic management did not promote C sequestration after six years of management. Moreover, organic management increased N2O emissions, and the GHG balance was more negative for organic than that for conventional farming when the ratio between crop harvest and emissions was determined.


Asunto(s)
Citrus , Suelo , Carbono , Metano , Nitrógeno , Óxido Nitroso
3.
J Environ Manage ; 206: 980-988, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29223108

RESUMEN

Sugarcane is a widespread bioenergy crop in tropical regions, and the growing global demand for renewable energy in recent years has led to a dramatic expansion and intensification of sugarcane agriculture in Brazil. Currently, extensive areas of low-intensity pasture are being converted to sugarcane, while management in the remaining pasture is becoming more intensive, i.e., includes tilling and fertilizer use. In this study, we assessed how such changes in land use and management practices alter emissions of greenhouse gases (GHG) such as CO2, N2O and CH4 by measuring in situ fluxes for one year after conversion from low-intensity pasture to conventional sugarcane agriculture and management-intensive pasture. Results show that CO2 and N2O fluxes increased significantly in pasture and sugarcane with tillage, fertilizer use, or both combined. Emissions were highly variable for all GHGs, yet, cumulatively, it was clear that annual emissions in CO2-equivalent (CO2-eq) were higher in management-intense pasture and sugarcane than in unmanaged pasture. Surprisingly, tilled pasture with fertilizer (management-intensive pasture) resulted in higher CO2-eq emissions than conventional sugarcane. We concluded that intensification of pasture management and the conversion of pasture to sugarcane can increase the emission factor (EF) estimated for sugarcane produced in Brazil. The role of management practices and environmental conditions and the potential for reducing emissions are discussed.


Asunto(s)
Agricultura , Gases de Efecto Invernadero , Saccharum , Animales , Brasil , Dióxido de Carbono , Bovinos , Gases , Efecto Invernadero , Metano , Óxido Nitroso
4.
Sci Total Environ ; 844: 157238, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35810907

RESUMEN

Tropical streams have been intensively impacted by agricultural activities. Among the most important agricultural activities in Brazil, sugarcane production represents a large impact for economic development and for environmental conditions. Permeating sugarcane fields, several headwater streams can be affected by sugarcane cultivation, in special, aquatic biogeochemical cycles because of the deforestation, fertilization, crop residues and higher temperatures in the tropics. In this study, we analyzed the effects of sugarcane cultivation on methane fluxes and concentrations, assuming that carbon cycles are influenced by agricultural activities in headwater streams. Our study aimed to (1) measure methane fluxes and concentrations in tropical streams located in Southeastern Brazil, (2) Analyze whether seasonal cycles influence methane fluxes and concentrations, (3) Evaluate the influence of sugarcane cultivation on methane fluxes and (4) Analyze the association between water chemistry in the methane concentrations in tropical streams. We found mean fluxes of CH4 of 0.280 mmol m-2 d-1, with higher fluxes during the summer and in streams draining preserved catchments. The average CH4 concentrations were 0.695 µmol L-1, with higher values during the summer and in streams draining preserved catchments. Methane concentrations in the studied streams was influenced by dissolved oxygen (negatively), dissolved organic carbon (negatively), water velocity (positively) and conductivity (negatively). Methane concentrations were significantly higher than concentrations found in Temperate Grasslands, Savannas & Shrublands and similar to concentrations found in other tropical biomes (excluding Tropical & Subtropical Moist Broadleaf Forests which receives large amounts of organic inputs). We conclude that sugarcane influence methane concentrations and fluxes in tropical streams by reducing the organic matter availability provided by the native vegetation in soil and water.


Asunto(s)
Metano , Ríos , Agricultura , Dióxido de Carbono , Bosques , Ríos/química , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA