RESUMEN
BACKGROUND: Sickle Cell Disorder is Africa's most prevalent genetic disease. Yet, it remains a neglected condition, with high mortality under-five, and a lack of population-based studies in the region. This is the first of its kind in São Tomé e Príncipe, aiming to estimate the prevalence of sickle cell trait and other haemoglobin variants in women of reproductive age and its associated factors. METHODS: We conducted a cluster survey in 35 neighbourhoods. Haemoglobin was assessed through point-of-care capillary electrophoresis or high-performance liquid chromatography, and sociodemographic data through questionnaires. The weighted prevalence of sickle cell trait (HbAS) and HbC carriers was estimated with a 95% confidence interval (95% CI). We calculated weighted prevalence ratios (95% CI) through robust Poisson regression for its association with age and individual and collective genetic heritage. FINDINGS: The prevalence of sickle cell trait in women of reproductive age in São Tomé e Príncipe (n = 376) was 13.45% (95% CI: 9.05-19.00). The prevalence of HbC carriers was 8.00% (95% CI: 4.71-12.00). Older age and speaking Forro or Angolar were positively associated with having sickle cell trait. INTERPRETATION: The prevalence of sickle cell trait in São Tomé e Príncipe ranks high in the West African region. The country should follow international guidelines, implementing newborn screening and comprehensive healthcare management.
Asunto(s)
Anemia de Células Falciformes , Rasgo Drepanocítico , Recién Nacido , Humanos , Femenino , Rasgo Drepanocítico/epidemiología , Rasgo Drepanocítico/genética , Prevalencia , Estudios Transversales , Anemia de Células Falciformes/epidemiología , Anemia de Células Falciformes/genética , HemoglobinasRESUMEN
Gain-of-function mutations in the EPAS1/HIF2A gene have been identified in patients with hereditary erythrocytosis that can be associated with the development of paraganglioma, pheochromocytoma and somatostatinoma. In the present study, we describe a unique European collection of 41 patients and 28 relatives diagnosed with an erythrocytosis associated with a germline genetic variant in EPAS1. In addition we identified two infants with severe erythrocytosis associated with a mosaic mutation present in less than 2% of the blood, one of whom later developed a paraganglioma. The aim of this study was to determine the causal role of these genetic variants, to establish pathogenicity, and to identify potential candidates eligible for the new hypoxia-inducible factor-2 α (HIF-2α) inhibitor treatment. Pathogenicity was predicted with in silico tools and the impact of 13 HIF-2b variants has been studied by using canonical and real-time reporter luciferase assays. These functional assays consisted of a novel edited vector containing an expanded region of the erythropoietin promoter combined with distal regulatory elements which substantially enhanced the HIF-2α-dependent induction. Altogether, our studies allowed the classification of 11 mutations as pathogenic in 17 patients and 23 relatives. We described four new mutations (D525G, L526F, G527K, A530S) close to the key proline P531, which broadens the spectrum of mutations involved in erythrocytosis. Notably, we identified patients with only erythrocytosis associated with germline mutations A530S and Y532C previously identified at somatic state in tumors, thereby raising the complexity of the genotype/phenotype correlations. Altogether, this study allows accurate clinical follow-up of patients and opens the possibility of benefiting from HIF-2α inhibitor treatment, so far the only targeted treatment in hypoxia-related erythrocytosis disease.
Asunto(s)
Paraganglioma , Policitemia , Humanos , Policitemia/diagnóstico , Policitemia/genética , Mutación , Paraganglioma/complicaciones , Paraganglioma/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , HipoxiaRESUMEN
Hereditary erythrocytosis is a rare hematologic disorder characterized by an excess of red blood cell production. Here we describe a European collaborative study involving a collection of 2,160 patients with erythrocytosis sequenced in ten different laboratories. We focused our study on the EGLN1 gene and identified 39 germline missense variants including one gene deletion in 47 probands. EGLN1 encodes the PHD2 prolyl 4-hydroxylase, a major inhibitor of hypoxia-inducible factor. We performed a comprehensive study to evaluate the causal role of the identified PHD2 variants: (i) in silico studies of localization, conservation, and deleterious effects; (ii) analysis of hematologic parameters of carriers identified in the UK Biobank; (iii) functional studies of the protein activity and stability; and (iv) a comprehensive study of PHD2 splicing. Altogether, these studies allowed the classification of 16 pathogenic or likely pathogenic mutants in a total of 48 patients and relatives. The in silico studies extended to the variants described in the literature showed that a minority of PHD2 variants can be classified as pathogenic (36/96), without any differences from the variants of unknown significance regarding the severity of the developed disease (hematologic parameters and complications). Here, we demonstrated the great value of federating laboratories working on such rare disorders in order to implement the criteria required for genetic classification, a strategy that should be extended to all hereditary hematologic diseases.
Asunto(s)
Policitemia , Humanos , Policitemia/diagnóstico , Policitemia/genética , Policitemia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Mutación de Línea Germinal , Secuencia de BasesRESUMEN
Accurate and consistent interpretation of sequence variants is integral to the delivery of safe and reliable diagnostic genetic services. To standardize the interpretation process, in 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published a joint guideline based on a set of shared standards for the classification of variants in Mendelian diseases. The generality of these standards and their subjective interpretation between laboratories has prompted efforts to reduce discordance of variant classifications, with a focus on the expert specification of the ACMG/AMP guidelines for individual genes or diseases. Herein, we describe our experience as a ClinGen Variant Curation Expert Panel to adapt the ACMG/AMP criteria for the classification of variants in three globin genes (HBB, HBA2, and HBA1) related to recessively inherited hemoglobinopathies, including five evidence categories, as use cases demonstrating the process of specification and the underlying rationale.
Asunto(s)
Genoma Humano , Hemoglobinopatías , Humanos , Pruebas Genéticas , Variación Genética , Hemoglobinopatías/diagnóstico , Hemoglobinopatías/genética , Patología Molecular , Estados UnidosRESUMEN
In the already identified quantitative trait loci (QTL), modulating Hb F levels are cis-acting haplotypes of the ß-globin gene cluster itself, although the single nucleotide polymorphisms (SNPs) accounting more for the association, remain uncertain. In this study, the role in Hb F production of previously reported candidate SNPs within the ß-globin gene cluster was reexamined, along with a yet poorly studied variation in the BGLT3 gene. In a sample of ß-thalassemia (ß-thal) carriers, we succeeded in replicating the significant association between increased Hb F levels and rs7482144 (C>T) (HBG2 XmnI), which is the most well-established variation in the cluster influencing the trait. This SNP was found to be in strong linkage disequilibrium (LD) with a variation in the HBBP1 gene [rs10128556 (G>A)], which consistently revealed a similar association signal. Remarkably, much stronger than the latter associations were those involving both rs968857 (T allele) (3' HBBP1) and rs7924684 (G allele) (BGLT3), two SNPs that were also in strong LD. As the pattern of LD detected in the ß-globin gene cluster does not correlate with a tight linkage between markers, complex interactions between SNPs at the cluster seem to modulate Hb F. Seeing that no such associations were detected in normal subjects, the question can be raised on whether, under erythropoiesis stress, epigenetic mechanisms contribute to change the regulation of the entire ß-globin gene cluster. In conclusion, we provide statistical evidence for a new player within the ß-globin gene cluster, BGLT3, that in cooperation with other regions influences Hb F levels in ß-thal carriers.
Asunto(s)
Globinas beta , Talasemia beta , Proteínas Portadoras/genética , Hemoglobina Fetal/genética , Humanos , Familia de Multigenes , Sitios de Carácter Cuantitativo , Globinas beta/genética , Talasemia beta/genéticaRESUMEN
Several types of haemoglobinopathies are caused by copy number variants (CNVs). While diagnosis is often based on haematological and biochemical parameters, a definitive diagnosis requires molecular DNA analysis. In some cases, the molecular characterisation of large deletions/duplications is challenging and inconclusive and often requires the use of specific diagnostic procedures, such as multiplex ligation-dependent probe amplification (MLPA). Herein, we collected and comprehensively analysed all known CNVs associated with haemoglobinopathies. The dataset of 291 CNVs was retrieved from the IthaGenes database and was further manually annotated to specify genomic locations, breakpoints and MLPA probes relevant for each CNV. We developed IthaCNVs, a publicly available and easy-to-use online tool that can facilitate the diagnosis of rare and diagnostically challenging haemoglobinopathy cases attributed to CNVs. Importantly, it facilitates the filtering of available entries based on the type of breakpoint information, on specific chromosomal and locus positions, on MLPA probes, and on affected gene(s). IthaCNVs brings together manually curated information about CNV genomic locations, functional effects, and information that can facilitate CNV characterisation through MLPA. It can help laboratory staff and clinicians confirm suspected diagnosis of CNVs based on molecular DNA screening and analysis.
Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma , Humanos , Variaciones en el Número de Copia de ADN/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , ADN , GenómicaRESUMEN
Chuvash polycythemia is an autosomal recessive form of erythrocytosis associated with a homozygous p.Arg200Trp mutation in the von Hippel-Lindau (VHL) gene. Since this discovery, additional VHL mutations have been identified in patients with congenital erythrocytosis, in a homozygous or compound-heterozygous state. VHL is a major tumor suppressor gene, mutations in which were first described in patients presenting with VHL disease, which is characterized by the development of highly vascularized tumors. Here, we identify a new VHL cryptic exon (termed E1') deep in intron 1 that is naturally expressed in many tissues. More importantly, we identify mutations in E1' in 7 families with erythrocytosis (1 homozygous case and 6 compound-heterozygous cases with a mutation in E1' in addition to a mutation in VHL coding sequences) and in 1 large family with typical VHL disease but without any alteration in the other VHL exons. In this study, we show that the mutations induced a dysregulation of VHL splicing with excessive retention of E1' and were associated with a downregulation of VHL protein expression. In addition, we demonstrate a pathogenic role for synonymous mutations in VHL exon 2 that altered splicing through E2-skipping in 5 families with erythrocytosis or VHL disease. In all the studied cases, the mutations differentially affected splicing, correlating with phenotype severity. This study demonstrates that cryptic exon retention and exon skipping are new VHL alterations and reveals a novel complex splicing regulation of the VHL gene. These findings open new avenues for diagnosis and research regarding the VHL-related hypoxia-signaling pathway.
Asunto(s)
Exones , Predisposición Genética a la Enfermedad , Mutación , Policitemia/genética , Empalme del ARN , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/genética , Adolescente , Adulto , Niño , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Linaje , Policitemia/clasificación , Policitemia/patología , Adulto Joven , Enfermedad de von Hippel-Lindau/patologíaRESUMEN
Hb F production is under the influence of major quantitative trait loci (QTL). The present study aims: i) to replicate the association with Hb F for representative genetic variants in the three major Hb F QTLs in a Portuguese sample of ß-thalassemia (ß-thal) carriers; and ii) to test different genetic multi-locus models to account for the genetic component of Hb F variation. A population sample of 79 Portuguese ß-thal carriers (39 males, 40 females), aged between 2 to 70 years old, were genotyped for polymorphisms in the locus control region (LCR)-5' hypersensitive site 4 (5'HS4) rs16912979, XmnI-HBG2 rs7482144, BCL11A rs1427407 and HMIP rs66650371, using standard biomolecular procedures. Univariate linear regression models were used to test for genetic associations with Hb F. The minor alleles of the individual variants BCL11A rs1427407 (T) (0.165), HMIP rs66650371 (3 bp del) (0.247) and XmnI-HBG2 rs7482144 (T) (0.196), were found to be significantly associated with increased levels of Hb F (p = 0.029, p = 0.002 and p = 0.0004, respectively), explaining about 6.0, 12.0 and 15.0% of Hb F variation, respectively. In a multiple linear regression approach, the three loci accounted for about 30.0% of Hb F variance. Two genetic risk scores (GRS), rationalizing the number of minor alleles into a single genetic variable, explained about 30.0 and 32.0% of the Hb F variation. In conclusion, we replicated in ß-thal carriers previously reported associations with Hb F. Multi-locus models combining three representative variants of Hb F influencing QTLs can explain a larger amount of Hb F variability.
Asunto(s)
Hemoglobina Fetal/genética , Talasemia beta/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Frecuencia de los Genes , Variación Genética , Humanos , Región de Control de Posición , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Portugal/epidemiología , Sitios de Carácter Cuantitativo , Adulto Joven , Talasemia beta/epidemiologíaRESUMEN
Sickle Cell Disease (SCD) is an increasing global health problem and presents significant challenges to European health care systems. Newborn screening (NBS) for SCD enables early initiation of preventive measures and has contributed to a reduction in childhood mortality from SCD. Policies and methodologies for NBS vary in different countries, and this might have consequences for the quality of care and clinical outcomes for SCD across Europe. A two-day Pan-European consensus conference was held in Berlin in April 2017 in order to appraise the current status of NBS for SCD and to develop consensus-based statements on indications and methodology for NBS for SCD in Europe. More than 50 SCD experts from 13 European countries participated in the conference. This paper aims to summarise the discussions and present consensus recommendations which can be used to support the development of NBS programmes in European countries where they do not yet exist, and to review existing programmes.
Asunto(s)
Anemia de Células Falciformes/diagnóstico por imagen , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/epidemiología , Conferencias de Consenso como Asunto , Europa (Continente)/epidemiología , Femenino , Humanos , Recién Nacido , Masculino , Tamizaje Neonatal , Guías de Práctica Clínica como AsuntoAsunto(s)
Hemoglobina Fetal , Hemoglobinas , Humanos , Hemoglobinas/genética , Mutación , Hemoglobina Fetal/genéticaRESUMEN
Glucose-6-phosphate isomerase (GPI) deficiency cause hereditary nonspherocytic hemolytic anemia (HNSHA) of variable severity in individuals homozygous or compound heterozygous for mutations in GPI gene. This work presents clinical features and genotypic results of two patients of Portuguese origin with GPI deficiency. The patients suffer from a mild hemolytic anemia (Hb levels ranging from 10 to 12.7g/mL) associated with macrocytosis, reticulocytosis, hyperbilirubinemia, hyperferritinemia and slight splenomegaly. Genomic DNA sequencing revealed in one patient homozygosity for a new missense mutation in exon 3, c.260G>C (p.Gly87Ala), and in the second patient compound heterozygosity for the same missense mutation (p.Gly87Ala), along with a frameshift mutation resulting from a single nucleotide deletion in exon 14, c.1238delA (p.Gln413Arg fs*24). Mutation p.Gln413Arg fs*24 is the first frameshift null mutation to be described in GPI deficiency. Molecular modeling suggests that the structural change induced by the p.Gly87Ala pathogenic variant has direct impact in the structural arrangement of the region close to the active site of the enzyme.
Asunto(s)
Anemia Hemolítica Congénita no Esferocítica/genética , Mutación del Sistema de Lectura , Glucosa-6-Fosfato Isomerasa/genética , Mutación Missense , Dominio Catalítico , Humanos , Modelos Moleculares , Portugal , Conformación Proteica , Análisis de Secuencia de ADNRESUMEN
Erythrocytosis is a rare disorder characterized by increased red cell mass and elevated hemoglobin concentration and hematocrit. Several genetic variants have been identified as causes for erythrocytosis in genes belonging to different pathways including oxygen sensing, erythropoiesis and oxygen transport. However, despite clinical investigation and screening for these mutations, the cause of disease cannot be found in a considerable number of patients, who are classified as having idiopathic erythrocytosis. In this study, we developed a targeted next-generation sequencing panel encompassing the exonic regions of 21 genes from relevant pathways (~79 Kb) and sequenced 125 patients with idiopathic erythrocytosis. The panel effectively screened 97% of coding regions of these genes, with an average coverage of 450×. It identified 51 different rare variants, all leading to alterations of protein sequence, with 57 out of 125 cases (45.6%) having at least one of these variants. Ten of these were known erythrocytosis-causing variants, which had been missed following existing diagnostic algorithms. Twenty-two were novel variants in erythrocytosis-associated genes (EGLN1, EPAS1, VHL, BPGM, JAK2, SH2B3) and in novel genes included in the panel (e.g. EPO, EGLN2, HIF3A, OS9), some with a high likelihood of functionality, for which future segregation, functional and replication studies will be useful to provide further evidence for causality. The rest were classified as polymorphisms. Overall, these results demonstrate the benefits of using a gene panel rather than existing methods in which focused genetic screening is performed depending on biochemical measurements: the gene panel improves diagnostic accuracy and provides the opportunity for discovery of novel variants.
Asunto(s)
Mutación , Policitemia/genética , Variación Genética , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Policitemia/diagnóstico , Policitemia/etiología , Análisis de Secuencia de ADNRESUMEN
Three major loci have been associated with HbF levels, including -158C/T (XmnI) at HBG2 promoter region, and several polymorphisms at BCL11A intron-2 and HBS1L-MYB (HMIP) intergenic region. Mutations in the KLF1 gene were recently associated with increased HbF levels. This study aims to evaluate whether genetic variability at these loci influences HbF levels in ß-thalassemia carriers and in normal individuals of Portuguese origin. Sixty five ß-thalassemia carriers, HbF levels ranging from 0.2% to 9.5%, and 60 individuals with normal hematological parameters, HbF levels ranging from 0.2% to 7.4%, were selected for this study. In ß-thal carriers linear regression models revealed a strong statistical significant association for HBG2 (XmnI) rs7482144 (ß=0.455; P=5.858×10(-7)), and nominal significance for BCL11A rs766432 (ß=0.215; P=0.029) and HMIP rs9399137 (ß=0.209; P=0.011). In normal individuals, a case (HbF>2%; n=15) vs. control (HbF<1.7%; n=45) model, showed nominal significant associations for BCL11A SNPs rs11886868 (OR=4; P=0.001), rs766432 (OR=3.7; P=0.002) and rs7606173 (OR=0.36; P=0.032). KLF1 rs3817621 was not found associated with HbF levels. Our results suggest that in Portuguese ß-thal carriers the HBG2 XmnI polymorphism is strongly associated with HbF levels. In normal individuals, BCL11A polymorphisms, but not HMIP or HBG2 (XmnI) loci, are nominally associated with HbF expression.
Asunto(s)
Proteínas Portadoras/genética , Hemoglobina Fetal/genética , Genoma Humano , Proteínas Nucleares/genética , Polimorfismo de Nucleótido Simple , Talasemia beta/genética , gamma-Globinas/genética , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Proteínas de Unión al GTP/genética , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Proteínas HSP70 de Choque Térmico/genética , Heterocigoto , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Modelos Lineales , Masculino , Persona de Mediana Edad , Mutación , Factores de Elongación de Péptidos/genética , Portugal , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Represoras , Talasemia beta/diagnóstico , Talasemia beta/patologíaRESUMEN
Congenital erythrocytosis (CE), or congenital polycythemia, represents a rare and heterogeneous clinical entity. It is caused by deregulated red blood cell production where erythrocyte overproduction results in elevated hemoglobin and hematocrit levels. Primary congenital familial erythrocytosis is associated with low erythropoietin (Epo) levels and results from mutations in the Epo receptor gene (EPOR). Secondary CE arises from conditions causing tissue hypoxia and results in increased Epo production. These include hemoglobin variants with increased affinity for oxygen (HBB, HBA mutations), decreased production of 2,3-bisphosphoglycerate due to BPGM mutations, or mutations in the genes involved in the hypoxia sensing pathway (VHL, EPAS1, and EGLN1). Depending on the affected gene, CE can be inherited either in an autosomal dominant or recessive mode, with sporadic cases arising de novo. Despite recent important discoveries in the molecular pathogenesis of CE, the molecular causes remain to be identified in about 70% of the patients. With the objective of collecting all the published and unpublished cases of CE the COST action MPN&MPNr-Euronet developed a comprehensive Internet-based database focusing on the registration of clinical history, hematological, biochemical, and molecular data (http://www.erythrocytosis.org/). In addition, unreported mutations are also curated in the corresponding Leiden Open Variation Database.
Asunto(s)
Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Mutación , Policitemia/congénito , Receptores de Eritropoyetina/genética , Hipoxia de la Célula/genética , Eritropoyetina/metabolismo , Humanos , Internet , Policitemia/genética , Policitemia/metabolismo , Transducción de Señal/genéticaRESUMEN
Primary familial and congenital polycythaemia (PFCP) is a disease characterized by increased red blood cell mass, and can be associated with mutations in the intracellular region of the erythropoietin (EPO) receptor (EPOR). Here we explore the mechanisms by which EPOR mutations induce PFCP, using an experimental system based on chimeric receptors between epidermal growth factor receptor (EGFR) and EPOR. The design of the chimeras enabled EPOR signalling to be triggered by EGF binding. Using this system we analysed three novel EPOR mutations discovered in PFCP patients: a deletion mutation (Del1377-1411), a nonsense mutation (C1370A) and a missense mutation (G1445A). Three different chimeras, bearing these mutations in the cytosolic, EPOR region were generated; Hence, the differences in the chimera-related effects are specifically attributed to the mutations. The results show that the different mutations affect various aspects related to the signalling and metabolism of the chimeric receptors. These include slower degradation rate, higher levels of glycan-mature chimeric receptors, increased sensitivity to low levels of EGF (replacing EPO in this system) and extended signalling cascades. This study provides a novel experimental system to study polycythaemia-inducing mutations in the EPOR, and sheds new light on underlying mechanisms of EPOR over-activation in PFCP patients.
Asunto(s)
Policitemia/congénito , Receptores de Eritropoyetina/genética , Línea Celular , Membrana Celular/metabolismo , Codón sin Sentido , Análisis Mutacional de ADN , Receptores ErbB/genética , Glicosilación , Humanos , Técnicas In Vitro , Janus Quinasa 2/metabolismo , Sistema de Señalización de MAP Quinasas , Mutación Missense , Policitemia/genética , Polisacáridos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Receptores de Eritropoyetina/química , Receptores de Eritropoyetina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción STAT5/fisiología , Eliminación de Secuencia , Transducción de Señal/genética , Relación Estructura-Actividad , TransfecciónRESUMEN
Kruppel-like factor 1 (KLF1) is an essential erythroid-specific transcription factor. Several reports have shown that KLF1 gene mutations are associated with increased levels of Hb F and Hb A2. However, scarce population studies have analysed common KLF1 variations. This study examines the potential association with Hb F and Hb A2 levels in ß-thalassemia (ß-thal) carriers of Portugueseancestry of the four common KLF1 gene variants: -251C>G (rs3817621) and -148G>A (rs79334031), in the promoter region; and c.115A>C (p.Met39Leu) (rs112631212) and c.304T>C (p.Ser102Pro) (rs2072597), in exon 2. Ninety-two Portuguese ß-thal carriers (43 males and 49 females) aged 2 to 77 years old (mean 32.55 years) were engaged in the study. Hb F levels range from 0.2 to 12.5% and Hb A2 was above the normal level, ranging from 3.6 to 6%. The Hb A2 and Hb F levels were determined by high-performance liquid chromatography. Single-nucleotide polymorphisms were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Minor allele frequencies for SNPs rs3817621 (G), rs79334031 (A), rs112631212 (C) and rs2072597 (C) were 0.196, 0.016, 0.011 and 0.169, respectively. Basic simple linear regression in the total population showed no significant associations with the levels of Hb F (P>0.05). For the low-frequency variant -148A, a statistically significant association was found with increased levels of Hb A2 (ß = 0.855; P = 0.017). In conclusion, an association signal with Hb A2 levels was observed for the variant -148A>G (rs79334031). The complex pattern of SNP interactions related to their influence on the KLF1 transcriptional activity mayexplain the absence of association with Hb F levels.
Asunto(s)
Hemoglobina Fetal , Hemoglobina A2 , Factores de Transcripción de Tipo Kruppel , Polimorfismo de Nucleótido Simple , Talasemia beta , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Femenino , Talasemia beta/genética , Talasemia beta/sangre , Masculino , Portugal , Adulto , Persona de Mediana Edad , Adolescente , Niño , Anciano , Preescolar , Hemoglobina Fetal/genética , Hemoglobina A2/genética , Adulto Joven , Heterocigoto , Estudios de Asociación Genética , Frecuencia de los Genes , Genotipo , Regiones Promotoras GenéticasRESUMEN
Thalassemia is one of the most prevalent monogenic disorders in low- and middle-income countries (LMICs). There are an estimated 270 million carriers of hemoglobinopathies (abnormal hemoglobins and/or thalassemia) worldwide, necessitating global methods and solutions for effective and optimal therapy. LMICs are disproportionately impacted by thalassemia, and due to disparities in genomics awareness and diagnostic resources, certain LMICs lag behind high-income countries (HICs). This spurred the establishment of the Global Globin Network (GGN) in 2015 at UNESCO, Paris, as a project-wide endeavor within the Human Variome Project (HVP). Primarily aimed at enhancing thalassemia clinical services, research, and genomic diagnostic capabilities with a focus on LMIC needs, GGN aims to foster data collection in a shared database by all affected nations, thus improving data sharing and thalassemia management. In this paper, we propose a minimum requirement for establishing a genomic database in thalassemia based on the HVP database guidelines. We suggest using an existing platform recommended by HVP, the Leiden Open Variation Database (LOVD) (https://www.lovd.nl/). Adoption of our proposed criteria will assist in improving or supplementing the existing databases, allowing for better-quality services for individuals with thalassemia. Database URL: https://www.lovd.nl/.
Asunto(s)
Bases de Datos Genéticas , Talasemia , Humanos , Talasemia/genética , Globinas/genética , Genómica/métodos , Variación GenéticaRESUMEN
INTRODUCTION: Congenital erythrocytosis can be classified as primary, when the defect is intrinsic to the RBC progenitors and independent of the serum erythropoietin (Epo) concentration, or secondary, when the erythrocytosis is the result of an upregulation of Epo production. Primary erythrocytosis is associated with mutations in the EPOR gene, secondary CE can de due to mutations that stabilize the hemoglobin in the oxygenated form or to mutations in the genes that control the transcriptional activation of the EPO gene - VHL, EGLN1, EPAS1. Chuvash polycythemia, caused by mutations in VHL gene, shares features of both primary and secondary erythrocytosis, with increased Epo production but also hypersensitivity of progenitors to Epo. MATERIAL AND METHODS: With the main objective of describing the etiology and molecular basis of CE, we have studied 70 consecutive unrelated patients presenting with idiopathic erythrocytosis from our hematology clinic or referred from other centers. According to a study algorithm, we have sequenced all the genes described as associated with CE. RESULTS AND DISCUSSION: Erythrocytosis molecular etiology was identify in 25 (36%) of the 70 subjects. High-affinity Hb variants were the most common cause, present in 20% of the cases. New mutations were identified in the JAK2, EPOR, VHL, and EGLN1 genes. CONCLUSIONS: High-affinity hemoglobin variants are a very rare cause of secondary CE, but it seems likely that their incidence may be underestimated. Our experience shows that in erythrocytosis with a dominant inheritance and normal or inappropriate high Epo levels, the HBB and HBA genes should be the first to be studied. In spite of the seven genes known to be involved in CE, the majority of the cases have unknown etiology.
Asunto(s)
Proteínas Portadoras/genética , Hemoglobinas Anormales/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Janus Quinasa 2/genética , Mutación , Policitemia/genética , Receptores de Eritropoyetina/genética , Adolescente , Adulto , Anciano , Niño , Proteínas del Citoesqueleto , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biología Molecular , Chaperonas Moleculares , Oxígeno/metabolismo , Policitemia/congénito , Policitemia/diagnósticoRESUMEN
During recent years, the increasing knowledge of genetic and physiological changes in polycythemia vera (PV) and of different types of congenital erythrocytosis has led to fundamental changes in recommendations for the diagnostic approach to patients with erythrocytosis. Although widely accepted for adult patients this approach may not be appropriate with regard to children and adolescents affected by erythrocytosis. The "congenital erythrocytosis" working group established within the framework of the MPN&MPNr-EuroNet (COST action BM0902) addressed this question in a consensus finding process and developed a specific algorithm for the diagnosis of erythrocytosis in childhood and adolescence which is presented here.