Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34092806

RESUMEN

We have evaluated a Josephson arbitrary waveform synthesizer (JAWS) in the voltage range from 1 µV to 1 mV at frequencies from 60 to 1000 Hz for the use in the calibration of lock-in amplifiers. The uncertainty contribution from the JAWS system is 45 nV for 1 mV at 1000 Hz and k = 2.0. We anticipate that the JAWS will help extend the lower voltage and frequency range of ac voltage metrology and improve the uncertainties by one order of magnitude compared to conventional techniques.

2.
Metrologia ; 57(6)2020.
Artículo en Inglés | MEDLINE | ID: mdl-34135536

RESUMEN

This paper presents a full characterization of a Dual Josephson Impedance Bridge (DJIB) at frequencies up to 80 kHz by using the DJIB to compare the best available impedance standards that are (a) directly traceable to the quantum Hall effect, (b) used as part of international impedance comparisons, or (c) believed to have calculable frequency dependence. The heart of the system is a dual Josephson Arbitrary Waveform Synthesizer (JAWS) source that offers unprecedented flexibility in high-precision impedance measurements. The JAWS sources allow a single bridge to compare impedances with arbitrary ratios and phase angles in the complex plane. The uncertainty budget shows that both the traditional METAS bridges and the DJIB have comparable uncertainties in the kilohertz range. This shows that the advantages of the DJIB, including the flexibility which allows the comparison of arbitrary impedances, the wide frequency range, and the automated balancing procedure, are obtained without compromising the measurement uncertainties. These results demonstrate that this type of instrument can considerably simplify the realization and maintenance of the various impedance scales. In addition, the DJIB is a very sensitive tool for investigating the frequency-dependent systematic-errors that can occur in impedance construction and in the voltage provided by the JAWS source at frequencies greater than 10 kHz.

3.
Artículo en Inglés | MEDLINE | ID: mdl-33281432

RESUMEN

The uniformity of the barriers in Josephson junctions (JJs) is a critical parameter in determining performance and operating margins for a wide variety of superconducting electronic circuits. We present an automated measurement system capable of measuring individual JJs across a 1 × 1 cm die at both ambient temperature and 4 K. This technique allows visualization of the spatial variation over a large area of the critical electrical properties of the junctions and allows for the direct correlation between room-temperature (RT) resistance and low temperature properties. The critical current variation of NbxSi1-x (x = 15%) barriers is found to be about 2.6% (one standard deviation) for 1024 junctions across an individual die and only weakly correlates with RT resistance measurements.

4.
Artículo en Inglés | MEDLINE | ID: mdl-31579273

RESUMEN

We present time-domain electrical measurements and simulations of the quantized voltage pulses that are generated from series-connected Josephson junction (JJ) arrays. The transmission delay of the JJ array can lead to a broadening of the net output pulse, depending on the direction of the output pulse propagation relative to the input bias pulse. To demonstrate this, we compare time-domain measurements of output pulses from radio-frequency Josephson Arbitrary Waveform Synthesizer (RF-JAWS) circuits fabricated with two different output measurement configurations, so that the backward-propagating and forward-propagating pulses can be measured. Measurements were made on arrays with 1200 and 3600 JJs and show that the net backward-propagating output pulse is broadened by timing delays in the JJ array while the net forward-propagating output pulse is insensitive to delay effects and can theoretically be further scaled to longer JJ array lengths without significant output pulse broadening. These measurements match well with simulations and confirm the expectation that the net output pulses arise from the time-delayed superposition of individual JJ output pulses from the series array of JJs. The measurements and analysis shown here have important implications for the realization of RF-JAWS circuits to be used as quantum-based reference sources for communications metrology.

5.
Artículo en Inglés | MEDLINE | ID: mdl-31555011

RESUMEN

We have developed a system to extend, by a factor of up to 1000, the voltage range over which Josephson arbitrary waveform synthesizers (JAWS) can be used in ac voltage metrology. The system is based on a precision inductive voltage divider, with a lock-in amplifier as the detector. Using a JAWS with a maximum output voltage of 250 mV (root mean square), we have made accurate voltage measurements up to 120 V at 60 Hz with expanded uncertainties (k = 2) of no more than 1.5 µV/V and demonstrate that the system can operate up to 1 kHz. We anticipate that our JAWS-based system will improve uncertainties in ac voltage metrology by one order of magnitude compared to techniques based on thermal voltage converters.

6.
Artículo en Inglés | MEDLINE | ID: mdl-31579270

RESUMEN

We have used the Josephson arbitrary waveform synthesizer (JAWS) to provide traceability for the phase of the harmonics, relative to their fundamental frequency, of a distorted waveform. For distorted waveforms with rms values from 0.154 to 0.2 V and harmonic magnitudes from 5% to 40% of the fundamental, our system can generate odd harmonics up to the 39th with best phase uncertainties from 0.001° to 0.010° (k = 2.0), depending on the harmonic number and harmonic magnitude. We anticipate that the ability of the JAWS to generate distorted waveforms with the lowest possible uncertainty in the magnitude, and phase spectra will make it a unique tool for low-frequency spectrum analysis.

7.
Artículo en Inglés | MEDLINE | ID: mdl-34877109

RESUMEN

In preparation for the redefinition of the International System of Units (SI), five different electronic measurements of the Boltzmann constant have been performed using different Johnson noise thermometry (JNT) systems over the past seven years. In this paper, we describe in detail the JNT system and uncertainty components associated with the most recent National Institute of Standards and Technology (NIST) determination of the Boltzmann constant: k = 1.380642 9(69) × 10-23 J/K, with a relative standard uncertainty of 5.0 × 10-6 and relative offset of -4.05 × 10-6 from the Committee on Data for Science and Technology (CODATA) 2014 recommended value. We discuss the input circuits and the approach we used to match the frequency response of two noise sources. We present new measurements of the correlated noise of the 4 K on-chip resistors in the quantum-accurate, pseudorandom, voltage-noise source, which we used to estimate the correlated, frequency-dependent, nonthermal noise in our system. Finally, we contrast our system with those used in other measurements and speculate on future improvements.

8.
Metrologia ; 54(4): 549-558, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28970638

RESUMEN

Recent measurements using acoustic gas thermometry have determined the value of the Boltzmann constant, k, with a relative uncertainty less than 1 × 10-6. These results have been supported by a measurement with a relative uncertainty of 1.9 × 10-6 made with dielectric-constant gas thermometry. Together, the measurements meet the requirements of the International Committee for Weights and Measures and enable them to proceed with the redefinition of the kelvin in 2018. In further support, we provide a new determination of k using a purely electronic approach, Johnson noise thermometry, in which the thermal noise power generated by a sensing resistor immersed in a triple-point-of-water cell is compared to the noise power of a quantum-accurate pseudo-random noise waveform of nominally equal noise power. The experimental setup differs from that of the 2015 determination in several respects: a 100 Ω resistor is used as the thermal noise source, identical thin coaxial cables made of solid beryllium-copper conductors and foam dielectrics are used to connect the thermal and quantum-accurate noise sources to the correlator so as to minimize the temperature and frequency sensitivity of the impedances in the connecting leads, and no trimming capacitors or inductors are inserted into the connecting leads. The combination of reduced uncertainty due to spectral mismatches in the connecting leads and reduced statistical uncertainty due to a longer integration period of 100 d results in an improved determination of k = 1.380 649 7(37) × 10-23 J K-1 with a relative standard uncertainty of 2.7 × 10-6 and a relative offset of 0.89 × 10-6 from the CODATA 2014 recommended value. The most significant terms in the uncertainty budget, the statistical uncertainty and the spectral-mismatch uncertainty, are uncorrelated with the corresponding uncertainties in the 2015 measurements.

9.
Artículo en Inglés | MEDLINE | ID: mdl-28736494

RESUMEN

We describe the implementation of new commercial pulse-bias electronics that have enabled an improvement in the generation of quantum-accurate waveforms both with and without low-frequency compensation biases. We have used these electronics to apply a multilevel pulse bias to the Josephson arbitrary waveform synthesizer and have generated, for the first time, a quantum-accurate bipolar sinusoidal waveform without the use of a low-frequency compensation bias current. This uncompensated 1 kHz waveform was synthesized with an rms amplitude of 325 mV and maintained its quantum accuracy over a1.5 mA operating current range. The same technique and equipment was also used to synthesize a quantum-accurate 1 MHz sinusoid with a 1.2 mA operating margin. In addition, we have synthesized a compensated 1 kHz sinusoid with an rms amplitude of 1 V and a 2.7 mA operating margin.

10.
Artículo en Inglés | MEDLINE | ID: mdl-27453676

RESUMEN

The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors.

11.
Sci Adv ; 4(1): e1701329, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29387787

RESUMEN

Neuromorphic computing promises to markedly improve the efficiency of certain computational tasks, such as perception and decision-making. Although software and specialized hardware implementations of neural networks have made tremendous accomplishments, both implementations are still many orders of magnitude less energy efficient than the human brain. We demonstrate a new form of artificial synapse based on dynamically reconfigurable superconducting Josephson junctions with magnetic nanoclusters in the barrier. The spiking energy per pulse varies with the magnetic configuration, but in our demonstration devices, the spiking energy is always less than 1 aJ. This compares very favorably with the roughly 10 fJ per synaptic event in the human brain. Each artificial synapse is composed of a Si barrier containing Mn nanoclusters with superconducting Nb electrodes. The critical current of each synapse junction, which is analogous to the synaptic weight, can be tuned using input voltage spikes that change the spin alignment of Mn nanoclusters. We demonstrate synaptic weight training with electrical pulses as small as 3 aJ. Further, the Josephson plasma frequencies of the devices, which determine the dynamical time scales, all exceed 100 GHz. These new artificial synapses provide a significant step toward a neuromorphic platform that is faster, more energy-efficient, and thus can attain far greater complexity than has been demonstrated with other technologies.

12.
Nat Commun ; 5: 3888, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24867104

RESUMEN

In a hybrid superconducting-magnetic device, two order parameters compete, with one type of order suppressing the other. Recent interest in ultra-low-power, high-density cryogenic memories has spurred new efforts to simultaneously exploit superconducting and magnetic properties so as to create novel switching elements having these two competing orders. Here we describe a reconfigurable two-layer magnetic spin valve integrated within a Josephson junction. Our measurements separate the suppression in the superconducting coupling due to the exchange field in the magnetic layers, which causes depairing of the supercurrent, from the suppression due to the stray magnetic field. The exchange field suppression of the superconducting order parameter is a tunable and switchable behaviour that is also scalable to nanometer device dimensions. These devices demonstrate non-volatile, size-independent switching of Josephson coupling, in magnitude as well as phase, and they may enable practical nanoscale superconducting memory devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA