Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
AAPS PharmSciTech ; 23(7): 274, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207549

RESUMEN

The present study investigates the physicochemical properties and stability of a novel lipid-based formulation-surfactant-enriched oil marbles containing abiraterone acetate. While the biopharmaceutical performance of this formulation has been reported recently, this study aims to fill the gap between a promising in vivo performance and industrial applicability. A series of techniques were employed to assess the solid-state characteristics of oil marble cores along with their physicochemical properties upon stability testing. The chemical stability of abiraterone acetate in the formulation was also investigated. The core of the formulation was found to be stable both physically and chemically over 12 months of storage. The in vitro performance of stressed samples was evaluated using a dissolution experiment. The formulation has successfully self-emulsified upon incubation in bio-relevant media, resulting in a fast and complete API release. An important issue connected with the excipient used as a covering material of oil marbles has been identified. The seemingly insignificant water sorption caused agglomeration of the oil marbles and consequently compromised the dissolution rate in some of the stressed samples. Replacing HPMC with lactose as a covering material resulted in more favorable properties upon storage. Overall, it has been shown that oil marbles are an industrially applicable concept of the solidified lipid-based formulation.


Asunto(s)
Productos Biológicos , Excipientes , Acetato de Abiraterona , Carbonato de Calcio , Química Farmacéutica/métodos , Estabilidad de Medicamentos , Excipientes/química , Lactosa , Lípidos/química , Solubilidad , Tensoactivos/química , Agua
2.
AAPS PharmSciTech ; 19(8): 3414-3424, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30255475

RESUMEN

The problem of designing tablet geometry and its internal structure that results into a specified release profile of the drug during dissolution was considered. A solution method based on parametric programming, inspired by CAD (computer-aided design) approaches currently used in other fields of engineering, was proposed and demonstrated. The solution of the forward problem using a parametric series of structural motifs was first carried out in order to generate a library of drug release profiles associated with each structural motif. The inverse problem was then solved in three steps: first, the combination of basic structural motifs whose superposition provides the closest approximation of the required drug release profile was found by a linear combination of pre-calculated release profiles. In the next step, the final tablet design was constructed and its dissolution curve found computationally. Finally, the proposed design was 3D printed and its dissolution profile was confirmed experimentally. The computational method was based on the numerical solution of drug diffusion in a boundary layer surrounding the tablet, coupled with erosion of the tablet structure encoded by the phase volume function. The tablets were 3D printed by fused deposition modelling (FDM) from filaments produced by hot-melt extrusion. It was found that the drug release profile could be effectively controlled by modifying the tablet porosity. Custom release profiles were obtained by combining multiple porosity regions in the same tablet. The computational method yielded accurate predictions of the drug release rate for both single- and multi-porosity tablets.


Asunto(s)
Impresión Tridimensional , Comprimidos/química , Tecnología Farmacéutica/métodos , Liberación de Fármacos , Porosidad , Comprimidos/farmacocinética
3.
Faraday Discuss ; 200: 143-164, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28581016

RESUMEN

When secondary organic aerosol (SOA) particles are formed by ozonolysis in the presence of gas-phase polycyclic aromatic hydrocarbons (PAHs), their formation and properties are significantly different from SOA particles formed without PAHs. For all SOA precursors and all PAHs, discussed in this study, the presence of the gas-phase PAHs during SOA formation significantly affects particle mass loadings, composition, growth, evaporation kinetics, and viscosity. SOA particles formed in the presence of PAHs have, as part of their compositions, trapped unreacted PAHs and products of heterogeneous reactions between PAHs and ozone. Compared to 'pure' SOA particles, these particles exhibit slower evaporation kinetics, have higher fractions of non-volatile components, like oligomers, and higher viscosities, assuring their longer atmospheric lifetimes. In turn, the increased viscosity and decreased volatility provide a shield that protects PAHs from chemical degradation and evaporation, allowing for the long-range transport of these toxic pollutants. The magnitude of the effect of PAHs on SOA formation is surprisingly large. The presence of PAHs during SOA formation increases mass loadings by factors of two to five, and particle number concentrations, in some cases, by more than a factor of 100. Increases in SOA mass, particle number concentrations, and lifetime have important implications to many atmospheric processes related to climate, weather, visibility, and human health, all of which relate to the interactions between biogenic SOA and anthropogenic PAHs. The synergistic relationship between SOA and PAHs presented here are clearly complex and call for future research to elucidate further the underlying processes and their exact atmospheric implications.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos/química , Aerosoles/síntesis química , Aerosoles/química , Aerosoles/metabolismo , Gases/química , Estructura Molecular , Tamaño de la Partícula
4.
Pharm Res ; 34(5): 990-1001, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27573574

RESUMEN

PURPOSE: Imaging methods were used as tools to provide an understanding of phenomena that occur during dissolution experiments, and ultimately to select the best ratio of two polymers in a matrix in terms of enhancement of the dissolution rate and prevention of crystallization during dissolution. METHODS: Magnetic resonance imaging, ATR-FTIR spectroscopic imaging and Raman mapping have been used to study the release mechanism of a poorly water soluble drug, aprepitant, from multicomponent amorphous solid dispersions. Solid dispersions were prepared based on the combination of two selected polymers - Soluplus, as a solubilizer, and PVP, as a dissolution enhancer. Formulations were prepared in a ratio of Soluplus:PVP 1:10, 1:5, 1:3, and 1:1, in order to obtain favorable properties of the polymer carrier. RESULTS: The crystallization of aprepitant during dissolution has occurred to a varying degree in the polymer ratios 1:10, 1:5, and 1:3, but the increasing presence of Soluplus in the formulation delayed the onset of crystallization. The Soluplus:PVP 1:1 solid dispersion proved to be the best matrix studied, combining the abilities of both polymers in a synergistic manner. CONCLUSIONS: Aprepitant dissolution rate has been significantly enhanced. This study highlights the benefits of combining imaging methods in order to understand the release process.


Asunto(s)
Morfolinas/química , Polietilenglicoles/química , Polímeros/química , Polivinilos/química , Pirrolidinas/química , Aprepitant , Química Farmacéutica/métodos , Cristalización , Portadores de Fármacos/química , Liberación de Fármacos , Imagen por Resonancia Magnética/métodos , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Agua/química
5.
Environ Sci Technol ; 49(1): 243-9, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25494490

RESUMEN

Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semisolid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on α-pinene SOA particles generated, evaporated, and aged at <5%, 50 and 90% RH, and on limonene SOA particles at <5% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30-70% of the particle mass evaporates in 2 h, followed by a much slower evaporation rate. Evaporation kinetics at <5% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses; with aging at elevated RH leading to a more significant effect. In all cases, the observed SOA evaporation is nearly size-independent.


Asunto(s)
Aerosoles/química , Ciclohexenos/química , Monoterpenos/química , Terpenos/química , Contaminantes Atmosféricos/química , Monoterpenos Bicíclicos , Humedad , Cinética , Laboratorios , Limoneno , Volatilización
6.
Proc Natl Acad Sci U S A ; 108(6): 2190-5, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21262848

RESUMEN

Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models. Adsorption of "spectator" organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models.


Asunto(s)
Modelos Químicos , Monoterpenos/química , Transición de Fase , Aerosoles , Monoterpenos Bicíclicos , Calor , Cinética , Monoterpenos/síntesis química
7.
Int J Pharm ; 661: 124418, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964488

RESUMEN

There is increasing pharmaceutical interest in deep eutectic solvents not only as a green alternative to organic solvents in drug manufacturing, but also as liquid formulation for drug delivery. The present work introduces a hydrophobic deep eutectic solvent (HDES) to the field of lipid-based formulations (LBF). Phase behavior of a mixture with 2:1 M ratio of decanoic- to dodecanoic acid was studied experimentally and described by thermodynamic modelling. Venetoclax was selected as a hydrophobic model drug and studied by atomistic molecular dynamics simulations of the mixtures. As a result, valuable molecular insights were gained into the interaction networks between the different components. Moreover, experimentally the HDES showed greatly enhanced drug solubilization compared to conventional glyceride-based vehicles, but aqueous dispersion behavior was limited. Hence surfactants were studied for their ability to improve aqueous dispersion and addition of Tween 80 resulted in lowest droplet sizes and high in vitro drug release. In conclusion, the combination of HDES with surfactant(s) provides a novel LBF with high pharmaceutical potential. However, the components must be finely balanced to keep the integrity of the solubilizing HDES, while enabling sufficient dispersion and drug release.


Asunto(s)
Composición de Medicamentos , Liberación de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos , Simulación de Dinámica Molecular , Solubilidad , Solventes , Tensoactivos , Solventes/química , Tensoactivos/química , Lípidos/química , Composición de Medicamentos/métodos , Polisorbatos/química , Ácidos Láuricos/química , Química Farmacéutica/métodos , Sulfonamidas/química , Sulfonamidas/administración & dosificación , Aceites/química
8.
Eur J Pharm Sci ; 198: 106780, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38697312

RESUMEN

Co-milling is an effective technique for improving dissolution rate limited absorption characteristics of poorly water-soluble drugs. However, there is a scarcity of models available to forecast the magnitude of dissolution rate improvement caused by co-milling. Therefore, this study endeavoured to quantitatively predict the increase in dissolution by co-milling based on drug properties. Using a biorelevant dissolution setup, a series of 29 structurally diverse and crystalline drugs were screened in co-milled and physically blended mixtures with Polyvinylpyrrolidone K25. Co-Milling Dissolution Ratios after 15 min (COMDR15 min) and 60 min (COMDR60 min) drug release were predicted by variable selection in the framework of a partial least squares (PLS) regression. The model forecasts the COMDR15 min (R2 = 0.82 and Q2 = 0.77) and COMDR60 min (R2 = 0.87 and Q2 = 0.84) with small differences in root mean square errors of training and test sets by selecting four drug properties. Based on three of these selected variables, applicable multiple linear regression equations were developed with a high predictive power of R2 = 0.83 (COMDR15 min) and R2 = 0.84 (COMDR60 min). The most influential predictor variable was the median drug particle size before milling, followed by the calculated drug logD6.5 value, the calculated molecular descriptor Kappa 3 and the apparent solubility of drugs after 24 h dissolution. The study demonstrates the feasibility of forecasting the dissolution rate improvements of poorly water-solube drugs through co-milling. These models can be applied as computational tools to guide formulation in early stage development.


Asunto(s)
Composición de Medicamentos , Liberación de Fármacos , Solubilidad , Composición de Medicamentos/métodos , Povidona/química , Simulación por Computador , Preparaciones Farmacéuticas/química , Análisis de los Mínimos Cuadrados
9.
Clin Transl Sci ; 17(5): e13820, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38738493

RESUMEN

The bioavailability of rivaroxaban at the higher doses (15 and 20 mg) is considerably reduced when the drug is administered on an empty stomach. This can lead to inadequate anticoagulant effect, and therefore, it is recommended to use the higher doses at fed state. However, proper posology may represent a barrier for some patients. Therefore, the aim of this study was to evaluate innovative rivaroxaban-containing formulations designed to eliminate the food effect to ensure reliable absorption and thus to improve patient adherence with the treatment. Three prototypes (Cocrystal, HPMCP and Kollidon) with rivaroxaban were developed and their bioavailability and food effect in comparison to the reference product was tested in open label, randomized, single oral dose, crossover studies, where test products were administered under fasting and fed conditions and the reference product was administered under fed conditions. Comparable bioavailability for all tested prototypes both under fed and fasting conditions was demonstrated as the 90% confidence intervals of the geometric mean ratios for area under the concentration-time curve remained within the standard acceptance range of 80.00%-125.00%. An innovative immediate release form of rivaroxaban with no food effect on drug bioavailability has been developed, which may represent an important step toward increasing adherence, improving treatment outcome and reducing health care costs.


Asunto(s)
Disponibilidad Biológica , Estudios Cruzados , Ayuno , Interacciones Alimento-Droga , Rivaroxabán , Humanos , Rivaroxabán/farmacocinética , Rivaroxabán/administración & dosificación , Masculino , Adulto , Femenino , Administración Oral , Persona de Mediana Edad , Inhibidores del Factor Xa/farmacocinética , Inhibidores del Factor Xa/administración & dosificación , Adulto Joven , Composición de Medicamentos/métodos , Comidas
10.
Phys Chem Chem Phys ; 15(8): 2983-91, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23340901

RESUMEN

Formation, properties, transformations, and temporal evolution of secondary organic aerosol (SOA) particles depend strongly on SOA phase. Recent experimental evidence from both our group and several others indicates that, in contrast to common models' assumptions, SOA constituents do not form a low-viscosity, well-mixed solution, yielding instead a semisolid phase with high, but undetermined, viscosity. We find that when SOA particles are made in the presence of vapors of semi-volatile hydrophobic compounds, such molecules become trapped in the particles' interiors and their subsequent evaporation rates and thus their rates of diffusion through the SOA can be directly obtained. Using pyrene as the tracer molecule and SOA derived from α-pinene ozonolysis, we find that it takes ~24 hours for half the pyrene to evaporate. Based on the observed pyrene evaporation kinetics we estimate a diffusivity of 2.5 × 10(-21) m(2) s(-1) for pyrene in SOA. Similar measurements on SOA doped with fluoranthene and phenanthrene yield diffusivities comparable to that of pyrene. Assuming a Stokes-Einstein relation, an approximate viscosity of 10(8) Pa s can be calculated for this SOA. Such a high viscosity is characteristic of tars and is consistent with published measurements of SOA particle bounce, evaporation kinetics, and the stability of two reverse-layered morphologies. We show that a viscosity of 10(8) Pa s implies coalescence times of minutes, consistent with the findings that SOA particles formed by coagulation are spherical on the relevant experimental timescales. Measurements on aged SOA particles doped with pyrene yield an estimated diffusivity ~3 times smaller, indicating that hardening occurs with time, which is consistent with the increase in SOA oligomer content, decrease in water uptake, and decrease in evaporation rates previously observed with aging.

11.
Eur J Pharm Sci ; 186: 106463, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37169098

RESUMEN

There is a growing interest in using deep eutectic solvents (DES) as a pharmaceutical delivery system for poorly water-soluble compounds. To reduce the risk of drug precipitation following oral administration, this study addresses the hypothesis that directly including a polymeric precipitation inhibitor (PI) in a DES mixture could obtain a polymer-embedded deep eutectic system (PEDES) as a novel bio-enabling formulation principle. Following broad formulation screening, a PEDES embedding 15% w/w of polyvinyl pyrrolidone K30 (PVP) in L-carnitine:ethylene glycol (1:4, molar ratio) DES was successfully formulated as a supersaturating formulation using indomethacin as model compound. The drug solubility of 175.6 mg/mL obtained in DES was remarkably high, and upon release (phosphate buffer, pH 6.5) a maximum supersaturation factor of 9.8 was recorded, whereby the release kinetics displayed a suitable "parachute effect". The formulation was further characterized to include a molecular dynamics simulation. It can be concluded that PEDES appears to be a viable novel formulation approach, setting solid grounds for further research to assess the full potential of this novel type of supersaturating drug delivery system.


Asunto(s)
Disolventes Eutécticos Profundos , Polímeros , Polímeros/química , Preparaciones Farmacéuticas/química , Sistemas de Liberación de Medicamentos , Povidona/química , Solubilidad , Solventes/química
12.
Leukemia ; 37(12): 2486-2492, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37789147

RESUMEN

Dasatinib monohydrate indicated for the treatment of chronic myeloid leukemia displays pH-dependent solubility. The aim of reported development program of novel dasatinib anhydrate containing formulation was to demonstrate improved absorption and lower pharmacokinetic variability compared to dasatinib monohydrate. In a bioavailability study comparing formulations containing 110.6 mg and 140 mg of dasatinib as anhydrate and monohydrate, respectively, both Cmax and AUC of dasatinib were within standard 80.00-125.00% range, while the intra- and inter-subject variability for AUC0-inf after the test product was approximately 3-fold and 1.5-fold less than after the reference, respectively.In a drug-drug interaction study, omeprazole 40 mg reduced the mean AUC0-inf of dasatinib by 19%, when the test was ingested 2 h before the 5th omeprazole dose. This decrease of exposure is clinically irrelevant and substantially less than after the reference. Co-prescription analysis supports the importance of pH-dependent solubility of dasatinib, as >21% of patients were treated concomitantly with a PPI and dasatinib despite warnings against this co-medication in the SmPC.The novel dasatinib anhydrate containing formulation demonstrated improved absorption and less pharmacokinetic variability compared to dasatinib monohydrate product, which may translate into improved clinical outcomes, although this needs to be proven by an appropriate trial.


Asunto(s)
Omeprazol , Humanos , Dasatinib , Disponibilidad Biológica , Omeprazol/farmacocinética , Estudios Cruzados , Área Bajo la Curva , Administración Oral
13.
Int J Pharm ; 634: 122627, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36693484

RESUMEN

Nilotinib is a selective tyrosine-kinase inhibitor approved for the treatment of chronic myeloid leukemia. It is poorly soluble in aqueous media and has a low oral bioavailability. Nilotinib encapsulation into yeast glucan particles (GPs) was investigated in this work as a means of increasing bioavailability. The amorphization of nilotinib in GPs resulted in an increased dissolution rate, which was confirmed by in vitro experiments using biorelevant dissolution media. Simultaneously, GPs containing nilotinib were effectively taken up by macrophages, which was quantified in vitro on cell cultures. The overall oral bioavailability in a rat model was approximately 39 % for nilotinib delivered in a reference formulation (Tasigna) and was almost doubled when delivered in GPs. The contribution of glucan particles to the lymphatic transport of nilotinib was quantified. When delivered by GPs, cumulative nilotinib absorption via the lymphatic system increased by a factor of 10.8 compared to the reference, but still represented arelative bioavailability of only 1.12 %. The cumulative uptake of GPs in the lymph was found to be 0.54 mg after a single dose of 50 mg. Yeast glucan particles can therefore serve as a drug delivery vehicle with a dual function: dissolution rate enhancement by amorphization, and, to asmaller extent, lymphatic delivery due to macrophage uptake.


Asunto(s)
Glucanos , Saccharomyces cerevisiae , Ratas , Animales , Pirimidinas , Administración Oral
14.
Anal Chem ; 84(3): 1459-65, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22220641

RESUMEN

Particle shape is an important attribute in determining particle properties and behavior, but it is difficult to control and characterize. We present a new portable system that offers, for the first time, the ability to separate particles with different shapes and characterize their chemical and physical properties, including their dynamic shape factors (DSFs) in the transition and free-molecular regimes, with high precision, in situ, and in real-time. The system uses an aerosol particle mass analyzer (APM) to classify particles of one mass-to-charge ratio, transporting them to a differential mobility analyzer (DMA) that is tuned to select particles of one charge, mobility diameter, and for particles with one density, one shape. These uniform particles are then ready for use and/or characterization by any application or analytical tool. We combine the APM and DMA with our single-particle mass spectrometer, SPLAT II, to form the ADS and demonstrate its utility to measure individual particle compositions, vacuum aerodynamic diameters, and particle DSFs in two flow regimes for each selected shape. We applied the ADS to the characterization of aspherical ammonium sulfate and NaCl particles, demonstrating that both have a wide distribution of particle shapes with DSFs from approximately 1 to 1.5.

15.
Environ Sci Technol ; 46(22): 12459-66, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23098132

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs), known for their harmful health effects, undergo long-range transport (LRT) when adsorbed on and/or absorbed in atmospheric particles. The association between atmospheric particles, PAHs, and their LRT has been the subject of many studies yet remains poorly understood. Current models assume PAHs instantaneously attain reversible gas-particle equilibrium. In this paradigm, as gas-phase PAH concentrations are depleted due to oxidation and dilution during LRT, particle-bound PAHs rapidly evaporate to re-establish equilibrium leading to severe underpredictions of LRT potential of particle-bound PAHs. Here we present a new, experimentally based picture in which PAHs trapped inside highly viscous semisolid secondary organic aerosol (SOA) particles, during particle formation, are prevented from evaporation and shielded from oxidation. In contrast, surface-adsorbed PAHs rapidly evaporate leaving no trace. We find synergetic effects between hydrophobic organics and SOA - the presence of hydrophobic organics inside SOA particles drastically slows SOA evaporation to the point that it can almost be ignored, and the highly viscous SOA prevents PAH evaporation ensuring efficient LRT. The data show the assumptions of instantaneous reversible gas-particle equilibrium for PAHs and SOA are fundamentally flawed, providing an explanation for the persistent discrepancy between observed and predicted particle-bound PAHs.


Asunto(s)
Aerosoles/química , Contaminantes Atmosféricos/química , Hidrocarburos Policíclicos Aromáticos/química , Adsorción , Gases/química , Espectrometría de Masas , Modelos Químicos , Oxidación-Reducción , Volatilización
16.
Eur J Pharm Sci ; 176: 106254, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35793751

RESUMEN

Current guidelines suggest radiotherapy as a first-line treatment for prostate cancer, along with prostatectomy, and androgen deprivation therapy. Abiraterone is a first-in-class medicinal product recommended in the treatment of metastatic castration resistant prostate cancer (mCRPC) that targets androgen receptors and inhibits systemic synthesis. However, successful therapy with this drug may pose some challenges. It has to be administered as an inactive prodrug - abiraterone acetate. It is also dissolved and absorbed poorly with large interindividual variability and exhibits considerable food effects. Additionally, the recommended daily dose of the drug is high (1000 mg abiraterone acetate), and the cost of the therapy is burdensome. The following review focuses on the strategies to optimize therapy with abiraterone acetate. First, it summarizes current findings on abiraterone pharmacokinetics and accentuates the need for utilizing therapeutic monitoring in clinical practice. Next, it extensively describes the options for improving the low bioavailability of the drug. The two major approaches are the utilization of the positive food effect to increase the exposure and development of supergenerics. The review emphasizes how different formulation approaches lead to increased solubility and impact the outcomes of pre-clinical and clinical trials. The review concludes with a discussion on possible future directions that may lead to the increase of the therapeutic efficacy of abiraterone.


Asunto(s)
Acetato de Abiraterona , Neoplasias de la Próstata Resistentes a la Castración , Acetato de Abiraterona/farmacocinética , Acetato de Abiraterona/uso terapéutico , Antagonistas de Andrógenos/uso terapéutico , Androstenos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Monitoreo de Drogas , Humanos , Masculino , Preparaciones Farmacéuticas , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología
17.
Int J Pharm ; 600: 120515, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33774163

RESUMEN

Particle size is a key parameter when dealing with drug particle formation, delivery or dissolution. The correct measurement of particle size depends on various factors, such as sample preparation or dilution, but also on the choice of method for its characterization. In this work, we study the process of precipitation of poorly water-soluble drug Valsartan from supersaturated solution in the presence of nonionic surfactant Tween 20. Several techniques including dynamic light scattering (DLS) operated in several measuring modes, optical microscope (OM) and static light scattering (SLS) were used to analyze the kinetics of particle formation. As concluded by the results, the increase in turbidity of the solution seriously limits the application of classical DLS to properly measure the particle size and polydispersity. One way to get around this restriction is by dilution, which however results in a decrease in the size of Valsartan particles in the studied population. In contrast, here we present for a first time technique based on modulated 3D cross correlation DLS equipped with the sample goniometer to determine size of submicron particles of the drug in highly turbid solutions. Additionally, a modified OM was used to measure micron-sized particles for samples without any dilution in a continuous mode. Measured particle sizes combined with measured Valsartan concentration allowed us to identify mechanism responsible for the particle formation from supersaturated solutions. The main mechanism, as it is shown in this work, is covering surface of precipitate particles by the amount of used Tween 20.


Asunto(s)
Preparaciones Farmacéuticas , Dispersión Dinámica de Luz , Tamaño de la Partícula , Tensoactivos , Valsartán
18.
Int J Pharm ; 607: 120982, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34371148

RESUMEN

The sorption of poorly aqueous soluble active pharmaceutical ingredients (API) to mesoporous silica carriers is an increasingly common formulation strategy for dissolution rate enhancement for this challenging group of substances. However, the success of this approach for a particular API depends on an array of factors including the properties of the porous carrier, the loading method, or the attempted mass fraction of the API. At present, there is no established methodology for the rational selection of these parameters. In the present work, we report a systematic comparison of four well-characterised silica carriers and seven APIs loaded by the same solvent evaporation method. In each case, we find the maximum amorphization capacity by x-ray powder diffraction analysis and measure the in vitro drug release kinetics. For a selected case, we also demonstrate the potential for bioavailability enhancement by a permeation essay.


Asunto(s)
Portadores de Fármacos , Dióxido de Silicio , Liberación de Fármacos , Cinética , Porosidad , Solubilidad , Solventes
19.
Pharmaceutics ; 12(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781726

RESUMEN

The crystallization of poorly soluble drug molecules with an excipient into new solid phases called cocrystals has gained a considerable popularity in the pharmaceutical field. In this work, the cocrystal approach was explored for a very poorly water soluble antifungal active, itraconazole (ITR), which was, for the first time, successfully converted into this multicomponent solid using an aromatic coformer, terephthalic acid (TER). The new cocrystal was characterized in terms of its solid-state and structural properties, and a panel of pharmaceutical tests including wettability and dissolution were performed. Evidence of the cocrystal formation was obtained from liquid-assisted grinding, but not neat grinding. An efficient method of the ITR-TER cocrystal formation was ball milling. The stoichiometry of the ITR-TER phase was 2:1 and the structure was stabilized by H-bonds. When comparing ITR-TER with other cocrystals, the intrinsic dissolution rates and powder dissolution profiles correlated with the aqueous solubility of the coformers. The rank order of the dissolution rates of the active pharmaceutical ingredient (API) from the cocrystals was ITR-oxalic acid > ITR-succinic acid > ITR-TER. Additionally, the ITR-TER cocrystal was stable in aqueous conditions and did not transform to the parent drug. In summary, this work presents another cocrystal of ITR that might be of use in pharmaceutical formulations.

20.
Int J Pharm ; 587: 119719, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32745498

RESUMEN

Efficient tablet disintegration is a pre-requisite for fast and complete drug dissolution from immediate release formulations. While the overall tablet disintegration time is a routinely measured quality attribute of pharmaceutical products, little attention is usually paid to the analysis of disintegration fragments and the cascade of elementary steps that lead to their formation. In this work, we investigate the disintegration pathways of directly compressed tablets by a unique combination of three methods: (i) magnetic resonance imaging (MRI), to gain insight into structural changes of tablets during disintegration; (ii) texture analysis, to measure the disintegration kinetics; and (iii) static light scattering, to characterise the size distribution of disintegration fragments. By systematically varying the tablet composition (50-90% of ibuprofen as a model active ingredient, 0-4% of croscarmellose sodium disintegrant, 6-50% of lactose monohydrate filler), a relationship between the tablet formulation, the size distribution of the disintegration fragments and the dissolution rate of the active ingredient has been established. To interpret the experimental observations, we analyse the disintegration fragments by Raman mapping and relate their composition and structure to the micro-scale arrangement of individual formulation components inside the tablet.


Asunto(s)
Química Farmacéutica , Excipientes , Imagen por Resonancia Magnética , Solubilidad , Comprimidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA