Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 46(9): 4622-4631, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29684182

RESUMEN

We directly visualize the topology-mediated interactions between an unwinding site on a supercoiled DNA plasmid and a specific probe molecule designed to bind to this site, as a function of DNA supercoiling and temperature. The visualization relies on containing the DNA molecules within an enclosed array of glass nanopits using the Convex Lens-induced Confinement (CLiC) imaging method. This method traps molecules within the focal plane while excluding signal from out-of-focus probes. Simultaneously, the molecules can freely diffuse within the nanopits, allowing for accurate measurements of exchange rates, unlike other methods which could introduce an artifactual bias in measurements of binding kinetics. We demonstrate that the plasmid's structure influences the binding of the fluorescent probes to the unwinding site through the presence, or lack, of other secondary structures. With this method, we observe an increase in the binding rate of the fluorescent probe to the unwinding site with increasing temperature and negative supercoiling. This increase in binding is consistent with the results of our numerical simulations of the probability of site-unwinding. The temperature dependence of the binding rate has allowed us to distinguish the effects of competing higher order DNA structures, such as Z-DNA, in modulating local site-unwinding, and therefore binding.


Asunto(s)
ADN Superhelicoidal/química , ADN-Topoisomerasas de Tipo I/metabolismo , Cinética , Microscopía Fluorescente , Sondas de Oligonucleótidos/química , Plásmidos/genética , Temperatura
2.
Proc Natl Acad Sci U S A ; 111(37): 13295-300, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25092333

RESUMEN

We demonstrate a new platform, convex lens-induced nanoscale templating (CLINT), for dynamic manipulation and trapping of single DNA molecules. In the CLINT technique, the curved surface of a convex lens is used to deform a flexible coverslip above a substrate containing embedded nanotopography, creating a nanoscale gap that can be adjusted during an experiment to confine molecules within the embedded nanostructures. Critically, CLINT has the capability of transforming a macroscale flow cell into a nanofluidic device without the need for permanent direct bonding, thus simplifying sample loading, providing greater accessibility of the surface for functionalization, and enabling dynamic manipulation of confinement during device operation. Moreover, as DNA molecules present in the gap are driven into the embedded topography from above, CLINT eliminates the need for the high pressures or electric fields required to load DNA into direct-bonded nanofluidic devices. To demonstrate the versatility of CLINT, we confine DNA to nanogroove and nanopit structures, demonstrating DNA nanochannel-based stretching, denaturation mapping, and partitioning/trapping of single molecules in multiple embedded cavities. In particular, using ionic strengths that are in line with typical biological buffers, we have successfully extended DNA in sub-30-nm nanochannels, achieving high stretching (90%) that is in good agreement with Odijk deflection theory, and we have mapped genomic features using denaturation analysis.


Asunto(s)
Lentes , Nanoestructuras/química , Nanotecnología/métodos , ADN/química , Imagenología Tridimensional , Desnaturalización de Ácido Nucleico
3.
Biomicrofluidics ; 12(5): 054107, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30344834

RESUMEN

Convex Lens-induced Confinement (CLiC) is a single-molecule imaging technique that uses a deformable glass flow cell to gently trap, manipulate, and visualize single molecules within micro- and nano-structures, to enable a wide range of applications. Here, we miniaturize the CLiC flow cell, from 25 × 25 to 3 × 3 mm 2 and introduce pneumatic control of the confinement. Miniaturization of the flow cell improves fabrication throughput by almost two orders of magnitude and, advantageous for pharmaceutical and diagnostic applications where samples are precious, significantly lowers the internal volume from microliters to nanoliters. Pneumatic control of the device reduces the confinement gradient and improves mechanical stability while maintaining low autofluorescence and refractive index-matching with oil-immersion objectives. To demonstrate our "mini CLiC" system, we confine and image DNA in sub-50 nm nanogrooves, with high DNA extension consistent with the Odijk confinement regime.

4.
Biotechniques ; 61(2): 73-82, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27528072

RESUMEN

Here we present a high-throughput, parallelized cytoindentor for local compression of live cells. The cytoindentor uses convex lens-induced confinement (CLiC) to indent micrometer-sized areas in single cells and/or populations of cells with submicron precision. This is accomplished using micropatterned poly(dimethylsiloxane) (PDMS) films that are adhered to a convex lens to create arrays of extrusions referred to here as "posts." These posts caused local deformation of subcellular regions without any evidence of cell lysis upon CLiC indentation. Our micropost arrays were also functionalized with glycoproteins, such as fibronectin, to both pull and compress cells under customized confinement geometries. Measurements of Chinese hamster ovary (CHO-K1) cell migration trajectories and oxidative stress showed that the CLiC device did not damage or significantly stress the cells. Our novel tool opens a new area of investigation for visualizing mechanobiology and mechanochemistry within living cells, and the high-throughput nature of the technique will streamline investigations as current tools for mechanically probing material properties and molecular dynamics within cells, such as traditional cytoindentors and atomic force microscopy (AFM), are typically restricted to single-cell manipulation.


Asunto(s)
Técnicas Citológicas/instrumentación , Técnicas Citológicas/métodos , Microscopía Confocal/métodos , Animales , Fenómenos Biomecánicos/fisiología , Células CHO , Fenómenos Fisiológicos Celulares/fisiología , Cricetinae , Cricetulus , Dimetilpolisiloxanos/química , Diseño de Equipo , Ensayos Analíticos de Alto Rendimiento/instrumentación , Microtecnología/instrumentación , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA