Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17086, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273496

RESUMEN

Plant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global-change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.


Asunto(s)
Ecosistema , Bosques , Árboles , Plantas , Nitrógeno
2.
Environ Manage ; 73(6): 1247-1264, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38478071

RESUMEN

In urbanized areas, rivers and riparian ecosystems are often the only ecological corridors available for wildlife movement. There, riverbanks are often stabilised by civil engineering structures (dykes, riprap). This can lead to habitat degradation and loss of landscape connectivity. Fascines (willow bundles tied together) could be an alternative to riprap, since they maintain the quality of the natural ecosystems by using native vegetal species instead of rocks, but their potential positive impact needs to be assessed. We proposed a landscape-scale decision-making method for river managers who want to restore banks by transforming riprap into fascines to improve landscape connectivity. We applied our methodology to a case study involving a 25 km-stretch of the Arve River, France. We selected four target vertebrate species based on biological traits to cover a wide range of dispersal capacities. For each species, we used landscape graphs to assess habitat connectivity under different contrasted riverbank scenarios. Scenarios included replacing all-natural banks with ripraps or replacing all ripraps with fascines. In addition, we systematically tested the effect of replacing individual 100 or 500 m sections of ripraps by fascines, to locate where riverbank restoration would maximize connectivity gain. The four species selected responded very differently to the scenarios (up to +14% and +46% change in Probability of Connectivity for common toads and Eurasian beavers, respectively, 0% for common sandpipers and barred grass snakes). The restoration of specific riverbank sections could result in important gains in PC (up to +33% for one single section for one species) but no section maximized connectivity gain for all the target species.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Ríos , Animales , Conservación de los Recursos Naturales/métodos , Francia , Suelo/química , Bioingeniería/métodos
3.
J Environ Manage ; 256: 109950, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31818748

RESUMEN

Biodiversity loss is accelerating because of unceasing human activity and land clearing for development projects (urbanisation, transport infrastructure, mining and quarrying …). Environmental policy-makers and managers in different countries worldwide have proposed the mitigation hierarchy to ensure the goal of "no net loss (NNL) of biodiversity" and have included this principle in environmental impact assessment processes. However, spatial configuration is hardly ever taken into account in the mitigation hierarchy even though it would greatly benefit from recent developments in habitat connectivity modelling incorporating landscape graphs. Meanwhile, national, European and international commitments have been made to maintain and restore the connectivity of natural habitats to face habitat loss and fragmentation. Our objective is to revisit the mitigation hierarchy and to suggest a methodological framework for evaluating the environmental impact of development projects, which includes a landscape connectivity perspective. We advocate the use of the landscape connectivity metric equivalent connectivity (EC), which is based on the original concept of "amount of reachable habitat". We also refine the three main levels of the mitigation hierarchy (impact avoidance, reduction and offset) by integrating a landscape connectivity aspect. We applied this landscape connectivity framework to a simple, virtual habitat network composed of 14 patches of varying sizes. The mitigation hierarchy was addressed through graph theory and EC and several scenarios of impact avoidance, reduction and compensation were tested. We present the benefits of a habitat connectivity framework for the mitigation hierarchy, provide practical recommendations to implement this framework and show its use in real case studies that had previously been restricted to one or two steps of the mitigation hierarchy. We insist on the benefits of a habitat connectivity framework for the mitigation hierarchy and for ecological equivalence assessment. In particular, we demonstrate why it is risky to use a standard offset ratio (the ratio between the amount of area negatively impacted and the compensation area) without performing a connectivity analysis that includes the landscape surrounding the zone impacted by the project. We also discuss the limitations of the framework and suggest potential improvements. Lastly, we raise concerns about the need to rethink the strategy for biodiversity protection. Given that wild areas and semi-natural habitats are becoming scarcer, in particular in industrialised countries, we are convinced that the real challenge is to quickly reconsider the current vision of "developing first, then assessing the ecological damage", and instead urgently adopt an upstream protection strategy that would identify and protect the land that must not be lost if we wish to maintain viable species populations and ecological corridors allowing them the mobility necessary to their survival.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecología , Ecosistema , Política Ambiental
4.
J Environ Manage ; 243: 340-349, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31103679

RESUMEN

Environmental policies and the objective of no net loss highlight the importance of preserving ecological networks to limit the fragmentation of natural habitats and biodiversity loss, especially due to urbanization. In the environmental impact assessment context, habitat connectivity and the spatio-temporal dynamics of biodiversity are crucial to obtaining reliable predictions that can support decision-making. We propose a methodological framework 1) to quantify the overall impact of a development project on the functioning of an ecological network, and 2) to select the best locations for implanting new habitat patches intended to enhance landscape connectivity. The amount of reachable habitat concept was applied to three representative terrestrial mammal species: the red squirrel, the Eurasian badger and the European hedgehog. All three species are recognized as vulnerable to human pressures and potentially affected by the construction of a new stadium in our study site, Lyon (Southern France). The method combines the species distribution model Maxent with the landscape functional connectivity model Graphab. The results showed that using any one of the avoidance and reduction measures on its own was unsuccessful in achieving the objective of no net loss when habitat connectivity is considered. However, the combination of new habitat patches and corridors offered a higher gain than distinct measures. This is especially important in the short term, when new hedgerow plantations have not yet developed enough to be used by the target species. Our findings indicate, first, the need to take the temporal scale into account in environmental impact assessment. We also show that applying the optimal scenario, constructed using a cumulative patch addition followed by a similar process testing a set of potential land-use changes, maximizes habitat connectivity. Our methodology provides a useful tool to increase target species' habitat connectivity within the mitigation hierarchy and to enhance development project design for increased environmental efficiency.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Biodiversidad , Francia , Mamíferos
5.
J Environ Manage ; 241: 439-449, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30975576

RESUMEN

Environmental impact assessment (EIA) is performed to limit potential impacts of development projects on species and ecosystem functions. However, the methods related to EIA actually pay little attention to the landscape-scale effects of development projects on biodiversity. In this study we proposed a methodological framework to more properly address the landscape-scale impacts of a new stadium project in Lyon (France) on two representative mammal species exemplary for the endemic fauna, the red squirrel and the Eurasian badger. Our approach combined species distribution model using Maxent and landscape functional connectivity model using Graphab at two spatial scales to assess habitat connectivity before and after development project implementation. The development project had a negative impact on landscape connectivity: overall habitat connectivity (PC index) decreased by -6.8% and -1.8% and the number of graph components increased by +60.0% and +17.6% for the red squirrel and the European badger respectively, because some links that formerly connected habitat patches were cut by the development project. Changes affecting landscape structure and composition emphasized the need to implement appropriate avoidance and reduction measures. Our methodology provides a useful tool both for EIA studies at each step of the way to support decision-making in landscape conservation planning. The method could be also developed in the design phase to compare the effectiveness of different avoidance or mitigation measures and resize them if necessary to maximize habitat connectivity.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Biodiversidad , Francia
6.
Conserv Biol ; 24(1): 101-12, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20121845

RESUMEN

Past and present pressures on forest resources have led to a drastic decrease in the surface area of unmanaged forests in Europe. Changes in forest structure, composition, and dynamics inevitably lead to changes in the biodiversity of forest-dwelling species. The possible biodiversity gains and losses due to forest management (i.e., anthropogenic pressures related to direct forest resource use), however, have never been assessed at a pan-European scale. We used meta-analysis to review 49 published papers containing 120 individual comparisons of species richness between unmanaged and managed forests throughout Europe. We explored the response of different taxonomic groups and the variability of their response with respect to time since abandonment and intensity of forest management. Species richness was slightly higher in unmanaged than in managed forests. Species dependent on forest cover continuity, deadwood, and large trees (bryophytes, lichens, fungi, saproxylic beetles) and carabids were negatively affected by forest management. In contrast, vascular plant species were favored. The response for birds was heterogeneous and probably depended more on factors such as landscape patterns. The global difference in species richness between unmanaged and managed forests increased with time since abandonment and indicated a gradual recovery of biodiversity. Clearcut forests in which the composition of tree species changed had the strongest effect on species richness, but the effects of different types of management on taxa could not be assessed in a robust way because of low numbers of replications in the management-intensity classes. Our results show that some taxa are more affected by forestry than others, but there is a need for research into poorly studied species groups in Europe and in particular locations. Our meta-analysis supports the need for a coordinated European research network to study and monitor the biodiversity of different taxa in managed and unmanaged forests.


Asunto(s)
Biodiversidad , Árboles , Europa (Continente)
8.
Environ Monit Assess ; 141(1-3): 19-25, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17643191

RESUMEN

Biodiversity monitoring surveys are rarely optimised statistically before being initiated. Here, we optimised the monitoring of plants in a temperate forest. The total inventory cost, the number and size of quadrats were optimised to detect a 10% change in species richness over 5 years with alpha = beta = 0.05, using data from ongoing long-term floristic monitoring programs. The procedure showed that the inventory cost would be ca 15% lower using 100-, 200-m2 quadrats instead of 300- or 400-m2 quadrats. Despite the cost associated with the optimisation (e.g. gathering preliminary data) and the imprecise estimates (due to the typically small sample size of the pilot studies), optimisation would often be a better option than expert opinion when designing a monitoring survey.


Asunto(s)
Monitoreo del Ambiente/métodos , Árboles , Francia , Modelos Estadísticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA