Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38475357

RESUMEN

This study reports on the two-step manufacturing process of a filtration media obtained by first electrospinning a layer of polycaprolactone (PCL) non-woven fibers onto a paper filter backing and subsequently coating it by electrospraying with a second layer made of pure acidolysis lignin. The manufacturing of pure lignin coatings by solution electrospraying represents a novel development that requires fine control of the underlying electrodynamic processing. The effect of increasing deposition time on the lignin coating was investigated for electrospray time from 2.5 min to 120 min. Microstructural and physical characterization included SEM, surface roughness analysis, porosity tests, permeability tests by a Gurley densometer, ATR-FTIR analysis, and contact angle measurements vs. both water and oil. The results indicate that, from a functional viewpoint, such a natural coating endowed the membrane with an amphiphilic behavior that enabled modulating the nature of the bare PCL non-woven substrate. Accordingly, the intrinsic hydrophobic behavior of bare PCL electrospun fibers could be reduced, with a marked decrease already for a thin coating of less than 50 nm. Instead, the wettability of PCL vs. apolar liquids was altered in a less predictable manner, i.e., producing an initial increase of the oil contact angles (OCA) for thin lignin coating, followed by a steady decrease in OCA for higher densities of deposited lignin. To highlight the effect of the lignin type on the results, two grades of oak (AL-OA) of the Quercus cerris L. species and eucalyptus (AL-EU) of the Eucalyptus camaldulensis Dehnh species were compared throughout the investigation. All grades of lignin yielded coatings with measurable antibacterial properties, which were investigated against Staphylococcus aureus and Escherichia coli, yielding superior results for AL-EU. Remarkably, the lignin coatings did not change overall porosity but smoothed the surface roughness and allowed modulating air permeability, which is relevant for filtration applications. The findings are relevant for applications of this abundant biopolymer not only for filtration but also in biotechnology, health, packaging, and circular economy applications in general, where the reuse of such natural byproducts also brings a fundamental demanufacturing advantage.

2.
Nanomaterials (Basel) ; 13(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36770403

RESUMEN

Wood coatings prolong the service life of wood-based products, but they are usually of synthetic origin. The aim of the present article is to reduce the fossil-based compounds in a commercial waterborne acrylic coating by CNC addition and to test its performance. The coatings were applied on European beech and Norway spruce wood in order to test durability against Gloeophyllum trabeum (brown wood rot) and Trametes versicolor (white wood rot). Artificial weathering and blue stain, contact angle, physical tests (adhesion, impact and scratch test), chemical (FTIR) and morpho-anatomical analysis (SEM) were carried out. CNC addition increased viscosity, limiting the spreading of the coating into wood pores as visible after SEM observation, which reduced coating adhesion on the substrate. CNC improved fungal resistance as seen by a reduced mass loss and FTIR spectroscopy thanks to crosslinks formation, which reduced water sorption as well. Color change was not significant, and, on the other hand, glossiness was reduced but resulted as more homogeneous than control. CNC addition gave good results also in blue stain protection. CNC improved scratch resistance, but no visible change to impact was registered. CNC has promising results in coatings depending on wood and fungal species and presence of further commercial additives (biocides).

3.
Polymers (Basel) ; 15(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37376359

RESUMEN

After decades of utilization of fossil-based and environmentally hazardous compounds for wood preservation against fungal attack, there is a strong need to substitute those compounds with bio-based bioactive solutions, such as essential oils. In this work, lignin nanoparticles containing four essential oils from thyme species (Thymus capitatus, Coridothymus capitatus, T. vulgaris, and T. vulgaris Demeter) were applied as biocides in in vitro experiments to test their anti-fungal effect against two white-rot fungi (Trametes versicolor and Pleurotus ostreatus) and two brown-rot fungi (Poria monticola and Gloeophyllum trabeum). Entrapment of essential oils provided a delayed release over a time frame of 7 days from the lignin carrier matrix and resulted in lower minimum inhibitory concentrations of the essential oils against the brown-rot fungi (0.30-0.60 mg/mL), while for the white-rot fungi, identical concentrations were determined compared with free essential oils (0.05-0.30 mg/mL). Fourier Transform infrared (FTIR) spectroscopy was used to assess the fungal cell wall changes in the presence of essential oils in the growth medium. The results regarding brown-rot fungi present a promising approach for a more effective and sustainable utilization of essential oils against this class of wood-rot fungi. In the case of white-rot fungi, lignin nanoparticles, as essential oils delivery vehicles, still need optimization in their efficacy.

4.
Polymers (Basel) ; 15(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37688217

RESUMEN

Acidolysis lignins from the species Quercus cerris L. and Eucalyptus camaldulensis Dehnh. were isolated and characterized using high pressure size exclusion chromatography (HP-SEC), Fourier-transform (FTIR) infrared spectroscopy, analytical pyrolysis-gas chromatography-mass spectrometry (Py-GCMS), and two-dimensional heteronuclear single quantum coherence (2D HSQC) NMR spectroscopy. The acidolysis lignins from the two different species varied in chemical composition and structural characteristics, with Q. cerris L. lignin having a higher S/G ratio and higher molar mass averages with a bimodal molar mass distribution. The different analytical techniques FTIR spectroscopy, Py-GCMS, and 2D NMR spectroscopy provided consistent results regarding the S/G ratio of the lignins from the two wood species. Based on the determined high S/G ratio of both oak and eucalypt lignin, the two wood sources could be promoted as substrates for efficient lignin isolation in modern forest biorefineries in order to develop innovative lignin-based value-added biorefinery products.

5.
Polymers (Basel) ; 14(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35160406

RESUMEN

Three different formulations of bio-based polyurethane (PU), varying the weight ratio between Organosolv lignin and a commercial isocyanate, were synthesized. The coating formulations were characterized by SEM, pyrolysis-GC/MS, FTIR spectroscopy and FTIR mapping, which confirmed the successful formation of urethane bonds between commercial isocyanate and hydroxyl groups deriving from lignin. The coatings were applied on beech wood samples to measure color and contact angles, and eventually FTIR mapping of the coated wood samples was performed. FTIR mapping is an interesting tool to monitor the distribution of PU chemical bonds on the coating surface and to evaluate the homogeneity of the applied coating films. Increasing the lignin content of the PU coatings results in more red-yellow and darker tones, while the commercial PU coating is transparent. For a higher lignin concentration, the solid content as well as the weight gain of the applied coatings increase. A higher percentage of lignin in the prepared PU formulations leads to superficial cracks and therefore higher coating permeability compared to the commercial PU, but the prepared lignin-based PU coating still makes a raw wood surface significantly more hydrophobic. Apparently, additives such as film-formers with low surface tension to counteract cracks' formation are necessary to improve the performance of lignin-based PU coatings.

6.
ACS Appl Bio Mater ; 2(11): 5077-5092, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-35021451

RESUMEN

The manufacturing of artificial bone grafts can potentially circumvent the issues associated with current bone grafting treatments for critical-size bone defects caused by pathological disorders, trauma, or massive tumor ablation. In this study, we report on a potentially patient-specific fabrication process in which replicas of bone defects, in particular zygomatic and mandibular bones and phalanxes of a hand finger, were manufactured by laser stereolithography and used as templates for the creation of PDMS molds. Gas-in-water foams were cast in the molds, rapidly frozen, freeze-dried, and cross-linked. Since bone matrix consists essentially of collagen and hydroxyapatite, biomimetic scaffolds were fabricated using gelatin and hydroxyapatite in a ratio very similar to that found in bone. The obtained composite scaffolds were excellent replicas of the original bone defects models and presented both a superficial and internal porous texture adequate for cellular and blood vessels infiltration. In particular, scaffolds exhibited a porous texture consisting of pores and interconnects with average size of about 300 and 100 µm, respectively, and a porosity of 90%. In vitro culture tests using hMSCs demonstrated scaffold biocompatibility and capacity in inducing differentiation toward osteoblasts progenitors. In vivo cellularized implants showed bone matrix deposition and recruitment of blood vessels. Overall, the technique/materials combination used in this work led to the fabrication of promising mechanically stable, bioactive, and biocompatible composite scaffolds with well-defined architectures potentially valuable in the regeneration of patient-specific bone defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA