Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Chemistry ; 27(65): 16250-16259, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34431140

RESUMEN

Tetraphenylmethane appended with four pyridylpyridinium units works as a scaffold to self-assemble four ruthenium porphyrins in a tetrahedral shape-persistent giant architecture. The resulting supramolecular structure has been characterised in the solid state by X-ray single crystal analysis and in solution by various techniques. Multinuclear NMR spectroscopy confirms the 1 : 4 stoichiometry with the formation of a highly symmetric structure. The self-assembly process can be monitored by changes of the redox potentials, as well as by modifications in the visible absorption spectrum of the ruthenium porphyrin and by a complete quenching of both the bright fluorescence of the tetracationic scaffold and the weak phosphorescence of the ruthenium porphyrin. An ultrafast photoinduced electron transfer is responsible for this quenching process. The lifetime of the resulting charge separated state (800 ps) is about four times longer in the giant supramolecular structure compared to the model 1 : 1 complex formed by the ruthenium porphyrin and a single pyridylpyridinium unit. Electron delocalization over the tetrameric pyridinium structure is likely to be responsible for this effect.

2.
J Org Chem ; 86(9): 7002-7009, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33884879

RESUMEN

A practical and effective photoredox propargylation of aldehydes promoted by 10 mol % of [Cp2TiCl2] is presented. No stoichiometric metals or scavengers are used for the process. A catalytic amount of the cheap and simply prepared organic dye 3DPAFIPN is used as the reductant for titanium. The reaction displayed a broad scope, and no traces of allenyl isomers were detected for simple propargyl bromide, whereas mixtures of propargyl and allenyl isomers were observed for substituted propargyl bromides.

3.
Inorg Chem ; 59(21): 15832-15841, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33073570

RESUMEN

The bicyclic ditopic linker 2,2'-biselenophene-5,5'-dicarboxylic acid (H2SpSp), specifically designed for metal-organic framework (MOF) construction, has been synthesized in good yield and fully characterized. The corresponding zirconium MOF (Zr-MOF) [Zr6O4(OH)4(SpSp)3.8Cl4.4] (1; where missing linkers are replaced by chloride anions as shown by X-ray fluorescence and elemental analysis) is isostructural with its bithiophene and bithiazole analogues. Starting from 1, an extension of the biselenophene-based Zr-MOF family has been successfully achieved, exploiting the structural analogy of the five-membered heterocycles selenophene, thiophene, and thiazole. Thus, three mixed-linker MOFs containing variable amounts of different bis(heterocyclic) dicarboxylic acids have been prepared and fully characterized: the two double-mixed [Zr6O4(OH)4(SpSp)2.6(TpTp)1.3Cl4.2] (2; H2TpTp = 2,2'-bithiophene-5,5'-dicarboxylic acid) and [Zr6O4(OH)4(SpSp)2(TzTz)1.8Cl4.4] (3; H2TzTz = 2,2'-bithiazole-5,5'-dicarboxylic acid) materials, as well as the triple-mixed [Zr6O4(OH)4(SpSp)1.6(TpTp)1.2(TzTz)1.4Cl3.6] (4) compound. The four MOFs are luminescent under UV irradiation, exhibiting emission wavelengths falling in the blue-green visible region, as observed for their constitutive linkers. These materials open new horizons in the preparation of porous luminescent sensors or multicolor emitters for light-emitting diodes.

4.
Photochem Photobiol Sci ; 18(9): 2180-2190, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30816403

RESUMEN

The one-photon (1P) and two-photon (2P) absorption properties of three quadrupolar dyes, featuring thiophene as a donor and acceptors of varying strengths, are determined by a combination of experimental and computational methods employing the density functional theory (DFT). The emission shifts in different solvents are well reproduced by time-dependent DFT calculations with the linear response and state specific approaches in the framework of the polarizable continuum model. The calculations show that the energies of both 1P- and 2P-active states decrease with an increase of the strength of the acceptor. The 2P absorption cross-sections predicted by the response theory are accounted for by considering just one intermediate state (S1) in the sum-over-states formulation. For the chromophore featuring the stronger acceptor, the energetic positions of the 1P- and 2P-active states prevent the exploitation of the theoretically predicted very high 2P activity due to the competing 1P absorption into the S1 state.

5.
Chemistry ; 23(26): 6380-6390, 2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28263437

RESUMEN

A shape-persistent molecule, featuring four bipyridinium units, has been synthesized that upon reduction undergoes intermolecular pimerization because of the rigid architecture of the molecule. The pimerization process has been investigated by a variety of techniques, such as absorption measurements, EPR spectroscopy, as well as gamma and pulse radiolysis, and compared with the behavior of a model compound. Computational studies have also been performed to support the experimental data. The most interesting feature of the tetramer is that pimerization occurs only above a threshold concentration of monoreduced species, on the contrary to the model compound. Furthermore, there is an increase of the apparent pimerization constant by increasing the concentration of reduced bipyridinium units. These results have been interpreted by the fact that pimerization is favored in the tetrahedrally shaped molecule because of a cooperative mechanism. Each multiply reduced molecule can indeed undergo multiple intermolecular interactions that enhance the stabilization of the system, also leading to hierarchical supramolecular growth. The resulting supramolecular system formed by such intermolecular pimerization should exhibit a diamond-like structure, as suggested by a simplified modeling approach. The intermolecular nature of the pimerization process occurring in the tetramer has been demonstrated by measuring the corresponding bimolecular rate constant by pulsed radiolysis experiments.

6.
Chemistry ; 23(10): 2363-2378, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-27897357

RESUMEN

The synthesis of O-doped polyaromatic hydro- carbons in which two polycyclic aromatic hydrocarbon sub units are bridged through one or two O atoms has been achieved. This includes high-yield ring-closure key steps that, depending on the reaction conditions, result in the formation of furanyl or pyranopyranyl linkages through intramolecular C-O bond formation. Comprehensive photophysical measurements in solution showed that these compounds have exceptionally high emission yields and tunable absorption properties throughout the UV/Vis spectral region. Electrochemical investigations showed that in all cases O annulation increases the electron-donor capabilities by raising the HOMO energy level, whereas the LUMO energy level is less affected. Moreover, third-order nonlinear optical (NLO) measurements on solutions or thin films containing the dyes showed very good values of the second hyperpolarizability. Importantly, poly(methyl methacrylate) films containing the pyranopyranyl derivatives exhibited weak linear absorption and NLO absorption compared to the nonlinearity and NLO refraction, respectively, and thus revealed them to be exceptional organic materials for photonic devices.

7.
Chem Rec ; 17(7): 700-712, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28054435

RESUMEN

The development of nanoscale systems capable to perform specific functions under external control is a challenging task and a fascinating objective in Chemistry. Photochromic compounds undergo radical changes in their physico-chemical properties upon light excitation, for this reason they are valuable building blocks for the construction of photo-controllable molecular devices, machines and materials. The E-Z photoisomerization of azobenzene has been known for almost 80 years and - owing to its high efficiency and excellent reversibility - has been widely employed to introduce an element of photo-control in a large variety of compounds, biomolecules, nanosystems and materials. Here we present some of our research results highlighting how this outstanding photochrome can be utilized to develop systems with light-induced functionalities.

8.
Angew Chem Int Ed Engl ; 56(42): 12820-12821, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28857385

RESUMEN

The photocatalytic mechanism reported in a recent Communication to produce the radical anion of pyrenes postulates a highly endergonic electron transfer process. An analysis of the thermodynamics is reported together with the proposal of an alternative thermodynamically feasible mechanism.

9.
Chemistry ; 21(7): 2936-47, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25538028

RESUMEN

The electrochemistry, photophysics, and electrochemically generated chemiluminescence (ECL) of a family of polysulfurated dendrimers with a pyrene core have been thoroughly investigated and complemented by theoretical calculations. The redox and luminescence properties of dendrimers are dependent on the generation number. From low to higher generation it is both easier to reduce and oxidize them and the emission efficiency increases along the family, with respect to the polysulfurated pyrene core. The analysis of such data evidences that the formation of the singlet excited state by cation-anion annihilation is an energy-deficient process and, thus, the ECL has been justified through the triplet-triplet annihilation pathway. The study of the dynamics of the ECL emission was achieved both experimentally and theoretically by molecular mechanics and quantum chemical calculations. It has allowed rationalization of a possible mechanism and the experimental dependence of the transient ECL on the dendrimer generation. The theoretically calculated Marcus electron-transfer rate constant compares very well with that obtained by the finite element simulation of the whole ECL mechanism. This highlights the role played by the thioether dendrons in modulating the redox and photophysical properties, responsible for the occurrence and dynamics of the electron transfer involved in the ECL. Thus, the combination of experimental and computational results allows understanding of the dendrimer size dependence of the ECL transient signal as a result of factors affecting the annihilation electron transfer.

10.
Faraday Discuss ; 185: 481-95, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26399301

RESUMEN

Silicon nanocrystals functionalized with tetraphenylporphyrin Zn(II) chromophores at the periphery perform as light harvesting antennae: excitation of the porphyrin units in the visible spectral region yields sensitized emission of the silicon nanocrystal core in the near infrared with a long lifetime (λ(max) = 905 nm, τ = 130 µs). This result demonstrates that this hybrid material has a potential application as a luminescent probe for bioimaging.

11.
Angew Chem Int Ed Engl ; 54(39): 11320-37, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26333145

RESUMEN

See the light of day: Light is the fastest way of transferring energy and information through space, and in chemistry it can perform the dual role of reactant and product. Sunlight, a really unique reactant, represents our ultimate energy source. Chemists are engaged in designing systems for the conversion of light into electrical or chemical energy and vice versa to create a more sustainable way of life.

12.
J Am Chem Soc ; 136(17): 6395-400, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24725096

RESUMEN

A hexathiobenzene molecule carrying six terpyridine (tpy) units at the periphery has been designed to couple the aggregation induced phosphorescence, displayed by the core in the solid state, to the metal binding properties of the tpy units. Upon Mg(2+) complexation in THF solution, phosphorescence of the hexathiobenzene core is turned on. Metal ion coordination yields the formation of a supramolecular polymer which hinders intramolecular rotations and motions of the core chromophore, thus favoring radiative deactivation of the luminescent excited state. Upon excitation of the [Mg(tpy)2](2+) units of the polymeric structure, sensitization of the core phosphorescence takes place with >90% efficiency. The light-harvesting polymeric antenna can be disassembled upon fluoride ion addition, thereby switching off luminescence and offering a new tool for fluoride ion sensing. This unique system can, thus, serve as cation or anion sensor.

13.
J Am Chem Soc ; 136(16): 6103-10, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24673195

RESUMEN

Monolayer sheets have gained attention due to the unique properties derived from their two-dimensional structure. One of the key challenges in sheet modification/synthesis is to exchange integral parts while keeping them intact. We describe site-to-site transmetalation of Zn(2+) in the netpoints of cm(2)-sized, metal-organic sheets by Fe(2+), Co(2+), and Pb(2+). This novel transformation was done both randomly and at predetermined patterns defined by photolithography to create monolayer sheets composed of different netpoints. All transmetalated sheets are mechanically strong enough to be spanned over 20 × 20 µm(2) sized holes. Density functional theory calculations provide both a model for the molecular structure of an Fe(2+)-based sheet and first insights into how transmetalation proceeds. Such transmetalated sheets with random and patterned netpoints can be considered as two-dimensional analogues of linear copolymers. Their nanoscale synthesis presents an advance in monolayer/polymer chemistry with applications in fields such as surface coating, molecular electronics, device fabrication, imaging, and sensing.

14.
Chemistry ; 20(34): 10661-8, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-24796580

RESUMEN

We have designed a new multichromophoric system based on a tetra(phenylthio)pyrene core appended with four terpyridine units. The system behaves as a molecular antenna that collects light with the peripheral units and funnels the energy to the very highly luminescent core. The addition of metals ions to the investigated system can not only switch the direction of the intramolecular energy transfer, but also control the formation of three-dimensional nanoscopic objects in a dual function.

15.
Chemistry ; 20(51): 17011-8, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25345969

RESUMEN

The efficient transformation of the hexadentate bispidinol 1 into carbamate derivatives yields functional bispidines enabling convenient functionalization for targeted imaging. The BODIPY-substituted bispidine 3 combines a coordination site for metal ions, such as radioactive (64) Cu(II) , with a fluorescent unit. Product 3 was thoroughly characterized by standard analytical methods, single crystal X-ray diffraction, radiolabeling, and photophysical analysis. The luminescence of ligand 3 was found to be strongly dependent on metal ion coordination: Cu(II) quenches the BODIPY fluorescence, whereas Ni(II) and Zn(II) ions do not affect it. It follows that, in imaging applications with the positron emitter (64) Cu(II) , residues of its origin from enriched (64) Ni and the decay products (64) Ni(II) and (64) Zn(II) , efficiently restore the fluorescence of the ligand. This allows for monitoring of the emitted radiation as well as the fluorescence signal. The stability of the (64) Cu(II) 3 complex is investigated by transmetalation experiments with Zn(II) and Ni(II) , using fluorescence and radioactivity detection, and the results confirm the high stability of (64) Cu(II) 3. In addition, metal complexes of ligand 3 with the lanthanide ions Tb(III) , Eu(III) , and Nd(III) are shown to exhibit emission of the BODIPY ligand and the lanthanide ion, thus enabling dual emission detection.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Quelantes/química , Quelantes/síntesis química , Complejos de Coordinación/química , Diagnóstico por Imagen/métodos , Elementos de la Serie de los Lantanoides/química , Sustancias Luminiscentes/química , Sustancias Luminiscentes/síntesis química , Cristalografía por Rayos X , Ligandos
16.
Chemistry ; 20(21): 6412-20, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24700672

RESUMEN

The synthesis of a new class of robust squaraine dyes, colloquially named 1,2-hemisquarimines (1,2-HSQiMs), through the microwave-assisted condensation of aniline derivatives with the 1,2-squaraine core is reported. In CH3CN, 1,2-HSQiMs show a broad absorption band with a high extinction coefficient and a maximum at around λ=530 nm, as well as an emission band centered at about λ=574 nm, that are pH dependent. Protonation of the imine nitrogen causes a redshift of both absorption and emission maxima, with a concomitant increase in the lifetime of the emitting excited state. Encapsulation of the chromophore into a cucurbit[7]uril host revealed fluorescence enhancement and increased photostability in water. The redox characteristics of 1,2-HSQiMs indicate that charge injection into TiO2 is possible; this opens up promising perspectives for their use as photosensitizers for solar energy conversion.

17.
Chemistry ; 20(23): 7054-60, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24825676

RESUMEN

The tetrahedral, shape-persistent molecule 1(4+), containing four pyridylpyridinium units connected through a central carbon atom, exhibits unexpected photophysical properties including a substantially redshifted absorption (2350 cm(-1)) and a very strong fluorescence (Φem = 40 %), compared with the monomer 2(+) (Φem = 0.4 %). Density functional theory calculations on the structure and spectroscopic properties of 1(4+) and 2(+) show that exciton interactions, homoconjugation, and orbital nature account for the observed differences in their photophysical properties. The protonated tetramer binds four cucurbit[7]uril molecules and the host/guest interactions can be controlled by chemical (acid/base) as well as redox stimuli.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Imidazoles/química , Compuestos de Piridinio/química , Técnicas Electroquímicas , Espectroscopía de Resonancia Magnética , Oxidación-Reducción , Compuestos de Piridinio/síntesis química , Teoría Cuántica , Agua/química
18.
Photochem Photobiol Sci ; 13(7): 997-1004, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24887701

RESUMEN

The investigated multiterpyridine chromophores form a 2D network upon metal ion complexation that causes profound changes to their photophysical properties; the experimental results are complemented by modeling of the electronic properties of isolated monomers as well as the structure of the polymeric network.

19.
Angew Chem Int Ed Engl ; 52(47): 12303-7, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24123466

RESUMEN

Great balls of fire: C60 and Y3 N@C80 were connected to the same oligo(phenyleneethynylene) unit to investigate their structural and photophysical properties. NMR investigations revealed a fulleroid structure for the Y3 N@C80 derivative, and both dyads gave rise to columnar phases with core-shell cylinders. The black and gray spheres represent the fullerene core units of the Y3 N@C80 derivative, which is an ideal candidate to be involved in energy and electron transfer processes.

20.
ACS Appl Energy Mater ; 6(11): 6243-6250, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37323205

RESUMEN

Photocatalytic H2 generation holds promise in the green production of alternative fuels and valuable chemicals. Seeking alternative, cost-effective, stable, and possibly reusable catalysts represents a timeless challenge for scientists working in the field. Herein, commercial RuO2 nanostructures were found to be a robust, versatile, and competitive catalyst in H2 photoproduction in several conditions. We employed it in a classic three-component system and compared its activities with those of the widely used platinum nanoparticle catalyst. We observed a hydrogen evolution rate of 0.137 mol h-1 g-1 and an apparent quantum efficiency (AQE) of 6.8% in water using EDTA as an electron donor. Moreover, the favorable employment of l-cysteine as the electron source opens possibilities precluded to other noble metal catalyst. The versatility of the system has also been demonstrated in organic media with impressive H2 production in acetonitrile. The robustness has been proved by the recovery of the catalyst by centrifugation and reusage alternatively in different media.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA