Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Langmuir ; 37(22): 6722-6727, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34030438

RESUMEN

Surfactant adsorption to fluid interfaces is ubiquitous in biological systems, industrial applications, and scientific fields. Herein, we unravel the impact of the hydrophobic phase (air and oil) and the role of oil polarity on the adsorption of surfactants to fluid interfaces. We investigated the adsorption of anionic (sodium dodecyl sulfate), cationic (dodecyltrimethylammonium bromide), and non-ionic (polyoxyethylene-(23)-monododecyl ether) surfactants at different interfaces, including air and oils, with a wide range of polarities. The surfactant-induced interfacial tension decrease, called the interfacial pressure, correlates linearly with the initial interfacial tension of the clean oil-water interface and describes the experimental results of over 30 studies from the literature. The higher interfacial competition of surfactant and polar oil molecules caused the number of adsorbed molecules at the interface to drop. Further, we found that the critical micelle concentration of surfactants in water correlates to the solubility of the oil molecules in water. Hence, the nature of the oil affects the adsorption behavior and equilibrium state of the surfactant at fluid interfaces. These results broaden our understanding and enable better predictability of the interactions of surfactants with hydrophobic phases, which is essential for emulsion, foam, and capsule formation, pharmaceutical commodities, cosmetics, and many food products.

2.
Soft Matter ; 17(11): 3022-3036, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33729256

RESUMEN

Animals have evolved distinctive survival strategies in response to constant selective pressure. In this review, we highlight how animals exploit flow phenomena by manipulating their habitat (exogenous) or by secreting (endogenous) complex fluids. Ubiquitous endogenous complex fluids such as mucus demonstrate rheological versatility and are therefore involved in many animal behavioral traits ranging from sexual reproduction to protection against predators. Exogenous complex fluids such as sand can be used either for movement or for predation. In all cases, time-dependent rheological properties of complex fluids are decisive for the fate of the biological behavior and vice versa. To exploit these rheological properties, it is essential that the animal is able to sense the rheology of their surrounding complex fluids in a timely fashion. As timing is key in nature, such rheological materials often have clearly defined action windows matching the time frame of their direct biological behavior. As many rheological properties of these biological materials remain poorly studied, we demonstrate with this review that rheology and material science might provide an interesting quantitative approach to study these biological materials in particular in context towards ethology and bio-mimicking material design.


Asunto(s)
Moco , Animales , Fenómenos Físicos , Reología
3.
Soft Matter ; 17(6): 1692-1700, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33393584

RESUMEN

The formation of viscoelastic networks at fluid interfaces by globular proteins is essential in many industries, scientific disciplines, and biological processes. However, the effect of the oil phase on the structural transitions of proteins, network formation, and layer strength at fluid interfaces has received little attention. Herein, we present a comprehensive study on the effect of oil polarity on globular protein networks. The formation dynamics and mechanical properties of the interfacial networks of three different globular proteins (lysozyme, ß-lactoglobulin, and bovine serum albumin) were studied with interfacial shear and dilatational rheometry. Furthermore, the degree of protein unfolding at the interfaces was evaluated by subsequent injection of disulfide bonds reducing dithiothreitol. Finally, we measured the interfacial layer thickness and protein immersion into the oil phase with neutron reflectometry. We found that oil polarity significantly affects the network formation, the degree of interfacial protein unfolding, interfacial protein location, and the resulting network strength. These results allow predicting emulsion stabilization of proteins, tailoring interfacial layers with desired mechanical properties, and retaining the protein structure and functionality upon adsorption.


Asunto(s)
Lactoglobulinas , Agua , Adsorción , Muramidasa , Albúmina Sérica Bovina
4.
Langmuir ; 36(26): 7566-7572, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32520568

RESUMEN

Crystalline glycerides play an important role in the formation of multiphase systems such as emulsions and foams. The stabilization of oil/water interfaces by glyceride crystals has been extensively studied compared to only few studies which have been dedicated to oil/air interfaces. This study investigates the crystallization and network formation of tripalmitin (TP) and monopalmitin (MP) at the middle-chain triglyceride (MCT) oil/air interface. TP crystals were found to crystallize in the bulk before aggregating as large rectangular crystal conglomerates at the MCT oil/air interface. This leads to the slow formation of a plastic deformable, macroscopic crystal layer with high interfacial rheological moduli. MP crystals form directly at the MCT oil/air interface resulting in a comparatively fast formation of an elastic deformable network. Crystals with tentacle-like morphology were found to be responsible for the network elasticity. In this work, we show how interfacial crystallization dynamics and mechanical strength can be linked to the molecular structure and crystallization behavior of glyceride crystals.

5.
Soft Matter ; 15(31): 6362-6368, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31298681

RESUMEN

The formation of electrostatic protein-polysaccharide multilayers has attracted attention for the design of fluid interfaces with enhanced stability and functionality. However, current techniques are often limited to measuring final multilayer properties. We present an interfacial shear rheology setup with simultaneous subphase exchange, allowing the transient measurement of biopolymer multilayers by their viscoelasticity. The successive and simultaneous adsorption of ß-lactoglobulin (ß-lg) and low-methoxyl pectin were investigated at the n-dodecane/water interface at pH 4. The successive injection of pectin increased the viscoelasticity of an adsorbed ß-lg layer by electrostatic complexation. On the other hand, simultaneous adsorption impeded adsorption kinetics and interfacial layer strength due to complexation in the bulk phase prior to adsorption. Neutron reflectometry at the air-water interface confirmed the formation of an initial ß-lg layer and electrostatic complexation of a secondary pectin layer, which desorbed upon pH-induced charge inversion. The layer formed by simultaneous adsorption mainly consisted of ß-lg. We conclude that protein-polysaccharide complexes show limited surface activity and result in a lower effective protein concentration available for adsorption.


Asunto(s)
Biopolímeros/química , Lactoglobulinas/química , Pectinas/química , Adsorción , Cinética , Transición de Fase , Reología , Electricidad Estática , Viscosidad
6.
Langmuir ; 34(16): 4929-4936, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29616820

RESUMEN

The adsorption of protein layers at oil-water interfaces is critical to the formation and stability of various emulsions in, for example, technical applications as well as in biological lipid storage. Effects of ionic strength, pH, temperature, and pretreatments of the proteins are well-known. However, the oil phase has been regarded as exchangeable and its role in protein adsorption has been widely ignored. Herein, the influence of systematically selected oil interfaces of high purity on the formation and properties of ß-lactoglobulin (ß-lg) adsorption layers was evaluated. Droplet profile tensiometry and interfacial rheometry were employed to determine the adsorption kinetics and dilatational and interfacial shear moduli. We show that depending on the molecular size, flexibility, hydrophobicity, polarity, and polarizability of the oils, globular proteins adsorb distinctively. Stronger interactions of polar oils with the hydrophilic exterior of the native ß-lg lead to decelerated protein unfolding. This results in lower surface pressures and slower formation of viscoelastic networks. In addition, polar oils interact stronger with the protein network by hydrophilic bonding and thereby act as softening agents. The observed effects of hydrophobic subphases on the adsorbed protein layers provide knowledge, which promotes higher reproducibility in rheological studies and precise tailoring of interfacial films for enhanced formation and stability of emulsions.


Asunto(s)
Lactoglobulinas/química , Aceites/química , Agua/química , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Reproducibilidad de los Resultados , Reología , Propiedades de Superficie
7.
Nat Food ; 5(5): 423-432, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38773278

RESUMEN

Chocolate production faces nutritional, environmental and socio-economic challenges present in the conventional cocoa value chain. Here we developed an approach that addresses these challenges by repurposing the often-discarded pectin-rich cocoa pod endocarp and converting it into a gel. This is done using cocoa pulp juice concentrate to replace traditional sugar from sugar beets. Although swelling of fibres, proteins and starches can limit gel incorporation, our proposed chocolate formulation contains up to 20 wt% gel. It also has comparable sweet taste as traditional chocolate while offering improved nutritional value with higher fibre and reduced saturated fatty acid content. A cradle-to-factory life cycle assessment shows that large-scale production of this chocolate could reduce land use and global warming potential compared with average European dark chocolate production. The process also provides opportunities for diversification of farmers' income and technology transfer, offering potential socio-economic benefits for cocoa-producing regions.


Asunto(s)
Cacao , Chocolate , Valor Nutritivo , Cacao/química , Chocolate/análisis , Humanos , Pectinas/química , Fibras de la Dieta/análisis , Gusto , Frutas/química , Manipulación de Alimentos/métodos
8.
J Colloid Interface Sci ; 630(Pt A): 731-741, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36274408

RESUMEN

The crystallization behavior of lipids is relevant in many fields such as adipose tissue formation and regeneration, forensic investigations and food production. Using a lipid model system composed of triacylglycerols, we study the formation of crystalline structures under laminar shear flows across various length scales by polarized light-, scanning electron-, and atomic force microscopy, as well as laser diffraction spectroscopy. The shear rate during crystallization γ̇cryst influences the acyl-chain length structure and promotes domain growth into the flow direction thereby transforming the crystallites from oblate into prolate particles. Concentration dependent aggregation of crystallites into clusters is the rate limiting step for floc and floc network formation. At high γ̇cryst, fast crystallite cluster formation at smaller equilibrium diameters is promoted. The high crystallite cluster concentration induces their aggregation into flocs which form weak networks. At low γ̇cryst, floc generation is limited by the low amount of crystallite clusters leading to slow growth of larger flocs and forming of strong networks. The findings in this work have potential implications ranging from the design of injectable soft tissue fillers for adipose tissue regeneration, to the crystalline network formation in microorganism derived lipids, up to a more energy-efficient production of chocolate confectionery.


Asunto(s)
Cristalización , Microscopía de Fuerza Atómica , Triglicéridos/química
9.
Colloids Surf B Biointerfaces ; 217: 112595, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35665640

RESUMEN

Understanding globular protein adsorption to fluid interfaces, their interfacial assembly, and structural reorganization is not only important in the food industry, but also in medicine and biology. However, due to their intrinsic structural complexity, a unifying description of these phenomena remains elusive. Herein, we propose N-isopropylacrylamide microgels as a promising model system to isolate different aspects of adsorption, dilatational rheology, and interfacial structure at fluid interfaces with a wide range of interfacial tensions, and compare the results with the ones of globular proteins. In particular, the steady-state spontaneously-adsorbed interfacial pressure of microgels correlates closely to that of globular proteins, following the same power-law behavior as a function of the initial surface tension. However, the dilatational rheology of spontaneously-adsorbed microgel layers is dominated by the presence of a loosely packed polymer corona spread at the interface, and it thus exhibits a similar mechanical response as flexible, unstructured proteins, which are significantly weaker than globular ones. Finally, structurally, microgels reveal a similar spreading and flattening upon adsorption as globular proteins do. In conclusion, microgels offer interesting opportunities to act as powerful model systems to unravel the complex behavior of proteins at fluid interfaces.


Asunto(s)
Microgeles , Adsorción , Reología , Propiedades de Superficie , Agua/química
10.
J Colloid Interface Sci ; 608(Pt 3): 2584-2592, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34774321

RESUMEN

Microgels are soft colloidal particles constituted by cross-linked polymer networks with a high potential for applications. In particular, after adsorption at a fluid interface, interfacial tension provides two-dimensional (2D) confinement for microgel monolayers and drives the reconfiguration of the particles, enabling their deployment in foam and emulsion stabilization and in surface patterning for lithography, sensing and optical materials. However, most studies focus on systems of fluids with a high interfacial tension, e.g. alkanes/ or air/water interfaces, which imparts similar properties to the assembled monolayers. Here, instead, we compare two organic fluid phases, hexane and methyl tert-butyl ether, which have markedly different interfacial tension (γ) values with water and thus tune the deformation of adsorbed microgels. We rationalize how γ controls the single-particle morphology, which consequently modulates the structural and mechanical response of the monolayers at varying interfacial compression. Specifically, when γ is low, the microgels are less deformed within the interface plane and their polymer networks can rearrange more easily upon lateral compression, leading to softer monolayers. Selecting interfaces with different surface energy offers an additional control to customize the 2D assembly of soft particles, from the fine-tuning of particle size and interparticle spacing to the tailoring of mechanical properties.


Asunto(s)
Microgeles , Adsorción , Emulsiones , Propiedades de Superficie , Tensión Superficial
11.
Food Funct ; 13(17): 9010-9020, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35942900

RESUMEN

Lipid emulsions (LEs) with tailored digestibility have the potential to modulate satiation or act as delivery systems for lipophilic nutrients and drugs. The digestion of LEs is governed by their interfacial emulsifier layer which determines their gastric structuring and accessibility for lipases. A plethora of LEs that potentially modulate digestion have been proposed in recent years, however, in vivo validations of altered LE digestion remain scarce. Here, we report on the in vivo digestion and satiation of three novel LEs stabilized by whey protein isolate (WPI), thermo-gelling methylcellulose (MC), or cellulose nanocrystals (CNCs) in comparison to an extensively studied surfactant-stabilized LE. LE digestion and satiation were determined in terms of gastric emptying, postprandial plasma hormone and metabolite levels characteristic for lipid digestion, perceived hunger/fullness sensations, and postprandial food intake. No major variations in gastric fat emptying were observed despite distinct gastric structuring of the LEs. The plasma satiation hormone and metabolite response was fastest and highest for WPI-stabilized LEs, indicating a limited capability of proteins to prevent lipolysis due to fast hydrolysis under gastric conditions and displacement by lipases. MC-stabilized LEs show a similar gastric structuring as surfactant-stabilized LEs but slightly reduced hormone and metabolite responses, suggesting that thermo-gelling MC prevents lipase adsorption more effectively. Ultimately, CNC-stabilized LEs showed a drastic reduction (>70%) in plasma hormone and metabolite responses. This confirms the efficiency of particle (Pickering) stabilized LEs to prevent lipolysis proposed in literature based on in vitro experiments. Subjects reported more hunger and less fullness after consumption of LEs stabilized with MC and CNCs which were able to limit satiation responses. We do not find evidence for the widely postulated ileal brake, i.e. that delivery of undigested nutrients to the ileum triggers increased satiation. On the contrary, we find decreased satiation for LEs that are able to delay lipolysis. No differences in food intake were observed 5 h after LE consumption. In conclusion, LE interfacial design modulates in vivo digestion and satiation response in humans. In particular, Pickering LEs show extraordinary capability to prevent lipolysis and qualify as oral delivery systems for lipophilic nutrients and drugs.


Asunto(s)
Digestión , Lípidos , Celulosa/química , Emulsiones/química , Hormonas , Humanos , Lipasa/metabolismo , Lípidos/química , Saciedad , Tensoactivos/farmacología
12.
J Colloid Interface Sci ; 584: 411-417, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33091866

RESUMEN

Adsorption of proteins to fluid interfaces is critical in many industries, scientific disciplines, and biological processes. However, the structural transitions of proteins upon adsorption and the effect of the hydrophobic subphase, such as oil, have received little attention. Herein, we present a comprehensive study on the effect of the hydrophobic subphase on the adsorption behavior of globular and random-coil proteins. The adsorption of proteins is limited by their structural stability, and accordingly, is faster for less stable globular proteins and fastest for random-coil proteins. Protein adsorption is slower at more polar oils, regardless of the protein type, structure, and stability. Moreover, we found a correlation of oil polarity and the induced surface pressure of proteins, which seems universally applicable and describes the experimental data of over 30 previous studies. The model works for all commonly applied subphases, with the exception of oils that chemically react with proteins (e.g. octanal) and air, due to the lack of hydrophobic interactions. These results foster our understanding of protein adsorption and allow the prediction of protein unfolding depending on protein-subphase interactions.


Asunto(s)
Aceites , Agua , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas
13.
Acta Biomater ; 130: 32-53, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34077806

RESUMEN

Fluid interfaces, i.e. the boundary layer of two liquids or a liquid and a gas, play a vital role in physiological processes as diverse as visual perception, oral health and taste, lipid metabolism, and pulmonary breathing. These fluid interfaces exhibit a complex composition, structure, and rheology tailored to their individual physiological functions. Advances in interfacial thin film techniques have facilitated the analysis of such complex interfaces under physiologically relevant conditions. This allowed new insights on the origin of their physiological functionality, how deviations may cause disease, and has revealed new therapy strategies. Furthermore, the interactions of physiological fluid interfaces with exogenous substances is crucial for understanding certain disorders and exploiting drug delivery routes to or across fluid interfaces. Here, we provide an overview on fluid interfaces with physiological relevance, namely tear films, interfacial aspects of saliva, lipid droplet digestion and storage in the cell, and the functioning of lung surfactant. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe therapies and drug delivery approaches targeted at fluid interfaces. STATEMENT OF SIGNIFICANCE: Fluid interfaces are inherent to all living organisms and play a vital role in various physiological processes. Examples are the eye tear film, saliva, lipid digestion & storage in cells, and pulmonary breathing. These fluid interfaces exhibit complex interfacial compositions and structures to meet their specific physiological function. We provide an overview on physiological fluid interfaces with a focus on interfacial phenomena. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe novel therapies and drug delivery approaches targeted at fluid interfaces. This sets the scene for ocular, oral, or pulmonary surface engineering and drug delivery approaches.


Asunto(s)
Preparaciones Farmacéuticas , Lágrimas , Sistemas de Liberación de Medicamentos , Reología
14.
J Colloid Interface Sci ; 584: 344-353, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33070074

RESUMEN

In light of environmental concerns and changing consumer demands, efforts are increasing to replace frequently used animal-based emulsifiers. We demonstrate the interfacial network formation and emulsifying potential of Arthrospira platensis protein extracts and hypothesize a mechanistic change upon progressing purification. A microalgae suspension of A. platensis powder in phosphate buffer solution (pH 7, 0.1 M) was homogenized and insoluble components separated by centrifugation. Proteins were precipitated at the identified isoelectric point at pH 3.5 and diafiltrated. In interfacial shear rheology measurements, the build-up of an interfacial viscoelastic network was faster and final network strength increased with the degree of purification. It is suggested that isolated A. platensis proteins rapidly form an interconnected protein layer while coextracted surfactants impede protein adsorption for crude and soluble extracts. Emulsions with 20 vol % medium chain triglycerides (MCT) oil could be formed with all extracts of different degrees of purification. Normalized by protein concentration, smaller droplets could be stabilized with the isolated fractions. For potential applications in food, pharma and cosmetic product categories, the enhanced functionality has to be balanced against the loss in biomass while purifying microalgae proteins or other alternative single cell proteins.


Asunto(s)
Microalgas , Spirulina , Adsorción , Animales , Emulsiones
15.
ACS Macro Lett ; 9(1): 115-121, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35638668

RESUMEN

Polysaccharides are ubiquitous in nature; they serve fundamental roles in vivo and are used for a multitude of food, pharmaceutical, cosmetic biomaterials, and biomedical applications. Here, the structure-property function for low acetylated Gellan gum hydrogels induced by divalent ions was established by means of optical, rheological, and microscopic techniques. The hydrogels interacted with visible light as revealed by birefringence and multiple scattering, as a consequence of quaternary, supramolecular fibrillar structures. The molecular assembly and structure were elucidated by statistical analysis and polymer physics concepts applied to high-resolution AFM height images and further supported by FTIR. This revealed intramolecular coil-to-single helix transitions, followed by lateral aggregation of single helices into rigid, fibrillar quaternary structures, ultimately responsible for gelation of the system. Calcium and magnesium chloride were shown to lead to fibrils up to heights of 6.0 nm and persistence lengths of several micrometers. The change in molecular structure affected the macroscopic gel stiffness, with the plateau shear modulus reaching ∼105 Pa. These results shed light on the two-step gelation mechanism of linear polysaccharides, their conformational molecular changes at the single polymer level and ultimately the macroscale properties of the ensued gels.

16.
Nanoscale Adv ; 1(11): 4308-4312, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36134395

RESUMEN

The adsorption of nanoparticles at fluid interfaces is of profound importance in the field of nanotechnology. Recent developments aim at pushing the boundaries beyond spherical model particles towards more complex shapes and surface chemistries, with particular interest in particles of biological origin. Here, we report on the adsorption of charged, shape-anisotropic cellulose nanocrystals (CNCs) for a wide range of oils with varying chemical structure and polarity. CNC adsorption was found to be independent of the chain length of aliphatic n-alkanes, but strongly dependent on oil polarity. Surface pressures decreased for more polar oils due to lower particle adsorption energies. Nanoparticles were increasingly wetted by polar oils, and interparticle Coulomb interactions across the oil phase thus increase in importance. No surface pressure was measurable and the O/W emulsification capacity ceased for the most polar octanol, suggesting limited CNC adsorption. Further, salt-induced charge screening enhanced CNC adsorption and surface coverage due to lower interparticle and particle-interface electrostatic repulsion. An empiric power law is presented which predicts the induced surface pressure of charged nanoparticles based on the specific oil-water interface tension.

17.
J Colloid Interface Sci ; 551: 297-304, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31096137

RESUMEN

Microalgae are promising protein sources due to their overall high protein content. The low aqueous-solubility of microalgae proteins, however, limits their application in food, pharmaceutical or personal care systems, unless solubility is enhanced by e.g. hydrolysis. In this study, we examined the interfacial rheological properties at the oil-water interface of insoluble microalgae protein-rich fraction from Chlorella protothecoides and their hydrolysates prepared by hydrolysis in hydrochloric acid at 65 °C (Hydrolysates 65) and 85 °C (Hydrolysates 85). Results showed increased interfacial activity of the insoluble microalgae protein-rich fraction after hydrolysis: Hydrolysates 65 and Hydrolysates85 had higher interfacial storage Gi' and loss moduli Gi″ compared to the untreated insoluble microalgae protein-rich fraction. Increasing amounts of soluble protein fragments mixed with insoluble protein particles in hydrolysates stabilized interfacial layers. The influence of pH on the interfacial behavior of samples was also determined and revealed that Gi' and Gi″ values of treated and untreated protein fractions decreased as pH increased beyond their isoelectric points due to increasing electrostatic repulsions between adsorbed protein fragments and aggregates. The high viscoelasticity of the acid-hydrolyzed insoluble microalgae protein-rich fraction at the oil-water interface indicates a high potential for them to be useful in stabilizing emulsion-based products.


Asunto(s)
Chlorella/química , Extractos Vegetales/química , Proteínas de Plantas/química , Hidrolisados de Proteína/química , Adsorción , Emulsiones , Calor , Ácido Clorhídrico/química , Concentración de Iones de Hidrógeno , Hidrólisis , Aceites/química , Reología , Resistencia al Corte , Solubilidad , Electricidad Estática , Propiedades de Superficie , Viscosidad , Agua/química
18.
J Control Release ; 204: 78-84, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25744826

RESUMEN

The control of the diffusion coefficient by the dimensionality d of the structure appears as a most promising lever to efficiently tune the release rate from lyotropic liquid crystalline (LLC) phases and dispersed particles towards sustained, controlled and targeted release. By using phosphatidylcholine (PC)- and monolinoleine (MLO)-based mesophases with various apolar structural modifiers and water-soluble drugs, we present a comprehensive study of the dimensional structural control of hydrophilic drug release, including 3-d bicontinuous cubic, 2-d lamellar, 1-d hexagonal and 0-d micellar cubic phases in excess water. We investigate how the surfactant, the oil properties and the drug hydrophilicity mitigate or even cancel the effect of structure variation on the drug release rate. Unexpectedly, the observed behavior cannot be fully explained by the thermodynamic partition of the drug into the lipid matrix, which points out to previously overlooked kinetic effects. We therefore interpret our results by discussing the mechanism of structural control of the diffusion rate in terms of drug permeation through the lipid membrane, which includes exchange kinetics. A wide range of implications follow regarding formulation and future developments, both for dispersed LLC delivery systems and topical applications in bulk phase.


Asunto(s)
Liberación de Fármacos , Cristales Líquidos/química , Aceites/química , Preparaciones Farmacéuticas/química , Tensoactivos/química , Cafeína/química , Ciclohexenos/química , Glucosa/química , Glicéridos/química , Interacciones Hidrofóbicas e Hidrofílicas , Limoneno , Modelos Químicos , Estructura Molecular , Transición de Fase , Fosfatidilcolinas/química , Proflavina/química , Terpenos/química , Termodinámica , Tocoferoles/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA