Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Cell ; 184(11): 2804-2806, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34048703

RESUMEN

The functional regulatory elements of agronomically important plant genomes have been long sought after. Marand et. al. generate a comprehensive atlas of cis-regulatory elements at single cell resolution in maize, providing a powerful resource for inquiries into the rules of multicellular development and for precision crop engineering.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Zea mays , Genoma de Planta , Secuencias Reguladoras de Ácidos Nucleicos/genética , Zea mays/genética
2.
Annu Rev Cell Dev Biol ; 35: 309-336, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31590583

RESUMEN

Cell polarity in plants operates across a broad range of spatial and temporal scales to control processes from acute cell growth to systemic hormone distribution. Similar to other eukaryotes, plants generate polarity at both the subcellular and tissue levels, often through polarization of membrane-associated protein complexes. However, likely due to the constraints imposed by the cell wall and their extremely plastic development, plants possess novel polarity molecules and mechanisms highly tuned to environmental inputs. Considerable progress has been made in identifying key plant polarity regulators, but detailed molecular understanding of polarity mechanisms remains incomplete in plants. Here, we emphasize the striking similarities in the conceptual frameworks that generate polarity in both animals and plants. To this end, we highlight how novel, plant-specific proteins engage in common themes of positive feedback, dynamic intracellular trafficking, and posttranslational regulation to establish polarity axes in development. We end with a discussion of how environmental signals control intrinsic polarity to impact postembryonic organogenesis and growth.


Asunto(s)
Polaridad Celular , Células Vegetales/fisiología , Animales , División Celular , Pared Celular/química , Células Eucariotas/citología , Células Vegetales/química , Células Vegetales/enzimología , Proteínas de Plantas/metabolismo , Proteínas de Unión al GTP rho/metabolismo
3.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345109

RESUMEN

The field of developmental biology has declined in prominence in recent decades, with off-shoots from the field becoming more fashionable and highly funded. This has created inequity in discovery and opportunity, partly due to the perception that the field is antiquated or not cutting edge. A 'think tank' of scientists from multiple developmental biology-related disciplines came together to define specific challenges in the field that may have inhibited innovation, and to provide tangible solutions to some of the issues facing developmental biology. The community suggestions include a call to the community to help 'rebrand' the field, alongside proposals for additional funding apparatuses, frameworks for interdisciplinary innovative collaborations, pedagogical access, improved science communication, increased diversity and inclusion, and equity of resources to provide maximal impact to the community.


Asunto(s)
Biología Evolutiva
4.
PLoS Biol ; 22(8): e3002770, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150946

RESUMEN

The development of multicellular organisms requires coordinated changes in gene expression that are often mediated by the interaction between transcription factors (TFs) and their corresponding cis-regulatory elements (CREs). During development and differentiation, the accessibility of CREs is dynamically modulated by the epigenome. How the epigenome, CREs, and TFs together exert control over cell fate commitment remains to be fully understood. In the Arabidopsis leaf epidermis, meristemoids undergo a series of stereotyped cell divisions, then switch fate to commit to stomatal differentiation. Newly created or reanalyzed scRNA-seq and ChIP-seq data confirm that stomatal development involves distinctive phases of transcriptional regulation and that differentially regulated genes are bound by the stomatal basic helix-loop-helix (bHLH) TFs. Targets of the bHLHs often reside in repressive chromatin before activation. MNase-seq evidence further suggests that the repressive state can be overcome and remodeled upon activation by specific stomatal bHLHs. We propose that chromatin remodeling is mediated through the recruitment of a set of physical interactors that we identified through proximity labeling-the ATPase-dependent chromatin remodeling SWI/SNF complex and the histone acetyltransferase HAC1. The bHLHs and chromatin remodelers localize to overlapping genomic regions in a hierarchical order. Furthermore, plants with stage-specific knockdown of the SWI/SNF components or HAC1 fail to activate specific bHLH targets and display stomatal development defects. Together, these data converge on a model for how stomatal TFs and epigenetic machinery cooperatively regulate transcription and chromatin remodeling during progressive fate specification.

5.
Plant Cell ; 35(2): 756-775, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36440974

RESUMEN

Stomata, cellular valves found on the surfaces of aerial plant tissues, present a paradigm for studying cell fate and patterning in plants. A highly conserved core set of related basic helix-loop-helix (bHLH) transcription factors regulates stomatal development across diverse species. We characterized BdFAMA in the temperate grass Brachypodium distachyon and found this late-acting transcription factor was necessary and sufficient for specifying stomatal guard cell fate, and unexpectedly, could also induce the recruitment of subsidiary cells in the absence of its paralogue, BdMUTE. The overlap in function is paralleled by an overlap in expression pattern and by unique regulatory relationships between BdMUTE and BdFAMA. To better appreciate the relationships among the Brachypodium stomatal bHLHs, we used in vivo proteomics in developing leaves and found evidence for multiple shared interaction partners. We reexamined the roles of these genes in Arabidopsis thaliana by testing genetic sufficiency within and across species, and found that while BdFAMA and AtFAMA can rescue stomatal production in Arabidopsis fama and mute mutants, only AtFAMA can specify Brassica-specific myrosin idioblasts. Taken together, our findings refine the current models of stomatal bHLH function and regulatory feedback among paralogues within grasses as well as across the monocot/dicot divide.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Arabidopsis/metabolismo , Brachypodium/genética , Estomas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
6.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34463761

RESUMEN

In many land plants, asymmetric cell divisions (ACDs) create and pattern differentiated cell types on the leaf surface. In the Arabidopsis stomatal lineage, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) regulates division plane placement and cell fate enforcement. Polarized subcellular localization of BASL is initiated before ACD and persists for many hours after the division in one of the two daughters. Untangling the respective contributions of polarized BASL before and after division is essential to gain a better understanding of its roles in regulating stomatal lineage ACDs. Here, we combine quantitative imaging and lineage tracking with genetic tools that provide temporally restricted BASL expression. We find that pre-division BASL is required for division orientation, whereas BASL polarity post-division ensures proper cell fate commitment. These genetic manipulations allowed us to uncouple daughter-cell size asymmetry from polarity crescent inheritance, revealing independent effects of these two asymmetries on subsequent cell behavior. Finally, we show that there is coordination between the division frequencies of sister cells produced by ACDs, and this coupling requires BASL as an effector of peptide signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , División Celular Asimétrica/fisiología , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular/fisiología , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Tamaño de la Célula , Transducción de Señal/fisiología
7.
Cell ; 137(7): 1320-30, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19523675

RESUMEN

Development in multicellular organisms requires the organized generation of differences. A universal mechanism for creating such differences is asymmetric cell division. In plants, as in animals, asymmetric divisions are correlated with the production of cellular diversity and pattern; however, structural constraints imposed by plant cell walls and the absence of homologs of known animal or fungal cell polarity regulators necessitates that plants utilize new molecules and mechanisms to create asymmetries. Here, we identify BASL, a novel regulator of asymmetric divisions in Arabidopsis. In asymmetrically dividing stomatal-lineage cells, BASL accumulates in a polarized crescent at the cell periphery before division, and then localizes differentially to the nucleus and a peripheral crescent in self-renewing cells and their sisters after division. BASL presence at the cell periphery is critical for its function, and we propose that BASL represents a plant-specific solution to the challenge of asymmetric cell division.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , División Celular , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular , Polaridad Celular , Estomas de Plantas/citología
8.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33875598

RESUMEN

In many developmental contexts, cell lineages have variable or flexible potency to self-renew. What drives a cell to exit from a proliferative state and begin differentiation, or to retain the capacity to divide days or years later is not clear. Here we exploit the mixed potential of the stomatal lineage ground cell (SLGC) in the Arabidopsis leaf epidermis as a model to explore how cells might balance potential to differentiate with a reentry into proliferation. By generating transcriptomes of fluorescence-activated cell sorting-isolated populations that combinatorically define SLGCs and integrating these data with other stomatal lineage datasets, we find that SLGCs appear poised between proliferation and endoreduplication. Furthermore, we found the RNA polymerase II-related mediator complex interactor DEK and the transcription factor MYB16 accumulate differentially in the stomatal lineage and influence the extent of cell proliferation during leaf development. These findings suggest that SLGC latent potential is maintained by poising of the cell cycle machinery, as well as general and site-specific gene-expression regulators.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Estomas de Plantas/genética , Arabidopsis/metabolismo , Ciclo Celular/genética , Diferenciación Celular/genética , División Celular/genética , Linaje de la Célula/genética , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Hojas de la Planta/metabolismo , Estomas de Plantas/embriología , Estomas de Plantas/metabolismo , Transcriptoma/genética
9.
Plant Physiol ; 188(2): 756-768, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34662401

RESUMEN

Cellular processes rely on the intimate interplay of different molecules, including DNA, RNA, proteins, and metabolites. Obtaining and integrating data on their abundance and dynamics at high temporal and spatial resolution are essential for our understanding of plant growth and development. In the past decade, enzymatic proximity labeling (PL) has emerged as a powerful tool to study local protein and nucleotide ensembles, discover protein-protein and protein-nucleotide interactions, and resolve questions about protein localization and membrane topology. An ever-growing number and continuous improvement of enzymes and methods keep broadening the spectrum of possible applications for PL and make it more accessible to different organisms, including plants. While initial PL experiments in plants required high expression levels and long labeling times, recently developed faster enzymes now enable PL of proteins on a cell type-specific level, even with low-abundant baits, and in different plant species. Moreover, expanding the use of PL for additional purposes, such as identification of locus-specific gene regulators or high-resolution electron microscopy may now be in reach. In this review, we give an overview of currently available PL enzymes and their applications in mammalian cell culture and plants. We discuss the challenges and limitations of PL methods and highlight open questions and possible future directions for PL in plants.


Asunto(s)
Enzimas/metabolismo , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proyectos de Investigación , Redes y Vías Metabólicas
10.
Development ; 146(3)2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30665887

RESUMEN

In the Arabidopsis stomatal lineage, cells transit through several distinct precursor identities, each characterized by unique cell division behaviors. Flexibility in the duration of these precursor phases enables plants to alter leaf size and stomatal density in response to environmental conditions; however, transitions between phases must be complete and unidirectional to produce functional and correctly patterned stomata. Among direct transcriptional targets of the stomatal initiating factor SPEECHLESS, a pair of genes, SOL1 and SOL2, are required for effective transitions in the lineage. We show that these two genes, which are homologs of the LIN54 DNA-binding components of the mammalian DREAM complex, are expressed in a cell cycle-dependent manner and regulate cell fate and division properties in the self-renewing early lineage. In the terminal division of the stomatal lineage, however, these two proteins appear to act in opposition to their closest paralog, TSO1, revealing complexity in the gene family that may enable customization of cell divisions in coordination with development.


Asunto(s)
Arabidopsis/metabolismo , Ciclo Celular/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Estomas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/biosíntesis , Receptores de Superficie Celular/biosíntesis , Arabidopsis/genética , Estomas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética
11.
Proc Natl Acad Sci U S A ; 116(43): 21914-21924, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31594845

RESUMEN

Plant cells maintain remarkable developmental plasticity, allowing them to clonally reproduce and to repair tissues following wounding; yet plant cells normally stably maintain consistent identities. Although this capacity was recognized long ago, our mechanistic understanding of the establishment, maintenance, and erasure of cellular identities in plants remains limited. Here, we develop a cell-type-specific reprogramming system that can be probed at the genome-wide scale for alterations in gene expression and histone modifications. We show that relationships among H3K27me3, H3K4me3, and gene expression in single cell types mirror trends from complex tissue, and that H3K27me3 dynamics regulate guard cell identity. Further, upon initiation of reprogramming, guard cells induce H3K27me3-mediated repression of a regulator of wound-induced callus formation, suggesting that cells in intact tissues may have mechanisms to sense and resist inappropriate dedifferentiation. The matched ChIP-sequencing (seq) and RNA-seq datasets created for this analysis also serve as a resource enabling inquiries into the dynamic and global-scale distribution of histone modifications in single cell types in plants.


Asunto(s)
Arabidopsis/citología , Reprogramación Celular , Histonas/metabolismo , Transcriptoma , Arabidopsis/metabolismo , Estomas de Plantas/metabolismo
12.
J Cell Sci ; 132(8)2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31028153

RESUMEN

Stomata are structures on the surfaces of most land plants that are required for gas exchange between plants and their environment. In Arabidopsis thaliana, stomata comprise two kidney bean-shaped epidermal guard cells that flank a central pore overlying a cavity in the mesophyll. These guard cells can adjust their shape to occlude or facilitate access to this pore, and in so doing regulate the release of water vapor and oxygen from the plant, in exchange for the intake of carbon dioxide from the atmosphere. Stomatal guard cells are the end product of a specialized lineage whose cell divisions and fate transitions ensure both the production and pattern of cells in aerial epidermal tissues. The stomatal lineage is dynamic and flexible, altering stomatal production in response to environmental change. As such, the stomatal lineage is an excellent system to study how flexible developmental transitions are regulated in plants. In this Cell Science at a Glance article and accompanying poster, we will summarize current knowledge of the divisions and fate decisions during stomatal development, discussing the role of transcriptional regulators, cell-cell signaling and polarity proteins. We will highlight recent work that links the core regulators to systemic or environmental information and provide an evolutionary perspective on stomata lineage regulators in plants.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Linaje de la Célula , Estomas de Plantas/fisiología , Transducción de Señal , Arabidopsis/citología , Proteínas de Arabidopsis/genética , División Celular Asimétrica , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Polaridad Celular , Gases/metabolismo , Regulación de la Expresión Génica de las Plantas , Estomas de Plantas/genética , Células Madre/metabolismo
13.
Development ; 145(14)2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29945871

RESUMEN

All multicellular organisms must properly pattern cell types to generate functional tissues and organs. The organized and predictable cell lineages of the Brachypodium leaf enabled us to characterize the role of the MAPK kinase kinase gene BdYODA1 in regulating asymmetric cell divisions. We find that YODA genes promote normal stomatal spacing patterns in both Arabidopsis and Brachypodium, despite species-specific differences in those patterns. Using lineage tracing and cell fate markers, we show that, unexpectedly, patterning defects in bdyoda1 mutants do not arise from faulty physical asymmetry in cell divisions but rather from improper enforcement of alternative cellular fates after division. These cross-species comparisons allow us to refine our understanding of MAPK activities during plant asymmetric cell divisions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Brachypodium/enzimología , Quinasas Quinasa Quinasa PAM/metabolismo , Estomas de Plantas/enzimología , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brachypodium/citología , Brachypodium/genética , Quinasas Quinasa Quinasa PAM/genética , Estomas de Plantas/citología , Estomas de Plantas/genética , Especificidad de la Especie
14.
Development ; 145(6)2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467245

RESUMEN

Plants, with cells fixed in place by rigid walls, often utilize spatial and temporally distinct cell division programs to organize and maintain organs. This leads to the question of how developmental regulators interact with the cell cycle machinery to link cell division events with particular developmental trajectories. In Arabidopsis leaves, the development of stomata, two-celled epidermal valves that mediate plant-atmosphere gas exchange, relies on a series of oriented stem cell-like asymmetric divisions followed by a single symmetric division. The stomatal lineage is embedded in a tissue in which other cells transition from proliferation to postmitotic differentiation earlier, necessitating stomatal lineage-specific factors to prolong competence to divide. We show that the D-type cyclin, CYCD7;1, is specifically expressed just prior to the symmetric guard cell-forming division, and that it is limiting for this division. Further, we find that CYCD7;1 is capable of promoting divisions in multiple contexts, likely through RBR1-dependent promotion of the G1/S transition, but that CYCD7;1 is regulated at the transcriptional level by cell type-specific transcription factors that confine its expression to the appropriate developmental window.


Asunto(s)
Arabidopsis/metabolismo , División Celular/genética , Ciclina D/metabolismo , Estomas de Plantas/citología , Arabidopsis/citología , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Linaje de la Célula/genética , Regulación de la Expresión Génica de las Plantas/genética , Epidermis de la Planta/citología , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
New Phytol ; 230(2): 867-877, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33378550

RESUMEN

Quantitative information on the spatiotemporal distribution of polarised proteins is central for understanding cell-fate determination, yet collecting sufficient data for statistical analysis is difficult to accomplish with manual measurements. Here we present Polarity Measurement (Pome), a semi-automated pipeline for the quantification of cell polarity and demonstrate its application to a variety of developmental contexts. Pome analysis reveals that, during asymmetric cell divisions in the Arabidopsis thaliana stomatal lineage, polarity proteins BASL and BRXL2 are more asynchronous and less mutually dependent than previously thought. A similar analysis of the linearly arrayed stomatal lineage of Brachypodium distachyon revealed that the MAPKKK BdYDA1 is segregated and polarised following asymmetrical divisions. Our results demonstrate that Pome is a versatile tool, which by itself or combined with tissue-level studies and advanced microscopy techniques can help to uncover new mechanisms of cell polarity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ciclo Celular , Linaje de la Célula , Polaridad Celular , Células Vegetales , Estomas de Plantas
16.
New Phytol ; 227(6): 1636-1648, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31985072

RESUMEN

When plants emerged from their aquatic origins to colonise land, they needed to avoid desiccation while still enabling gas and water exchange with the environment. The solution was the development of a waxy cuticle interrupted by epidermal pores, known as stomata. Despite the importance of stomata in plant physiology and their contribution to global water and carbon cycles, our knowledge of the genetic basis of stomatal development is limited mostly to the model dicot, Arabidopsis thaliana. This limitation is particularly troublesome when evaluating grasses, whose members represent our most agriculturally significant crops. Grass stomatal development follows a trajectory strikingly different from Arabidopsis and their uniquely shaped four-celled stomatal complexes are especially responsive to environmental inputs. Thus, understanding the development and regulation of these efficient complexes is of particular interest for the purposes of crop engineering. This review focuses on genetic regulation of grass stomatal development and prospects for the future, highlighting discoveries enabled by parallel comparative investigations in cereal crops and related genetic model species such as Brachypodium distachyon.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Arabidopsis/genética , Brachypodium/genética , Productos Agrícolas/genética , Estomas de Plantas
17.
Plant Cell ; 28(7): 1722-37, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27354558

RESUMEN

In plants, the presence of a load-bearing cell wall presents unique challenges during cell division. Unlike other eukaryotes, which undergo contractile cytokinesis upon completion of mitosis, plants instead synthesize and assemble a new dividing cell wall to separate newly formed daughter cells. Here, we mine transcriptome data from individual cell types in the Arabidopsis thaliana stomatal lineage and identify CSLD5, a member of the Cellulose Synthase Like-D family, as a cell wall biosynthesis enzyme uniquely enriched in rapidly dividing cell populations. We further show that CSLD5 is a direct target of SPEECHLESS, the master transcriptional regulator of these divisions during stomatal development. Using a combination of genetic analysis and in vivo localization of fluorescently tagged fusion proteins, we show that CSLD5 preferentially accumulates in dividing plant cells where it participates in the construction of newly forming cell plates. We show that CSLD5 is an unstable protein that is rapidly degraded upon completion of cell division and that the protein turnover characteristics of CSLD5 are altered in ccs52a2 mutants, indicating that CSLD5 turnover may be regulated by a cell cycle-associated E3-ubiquitin ligase, the anaphase-promoting complex.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosiltransferasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Glucosiltransferasas/genética , Unión Proteica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
18.
Proc Natl Acad Sci U S A ; 113(29): 8326-31, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27382177

RESUMEN

Stomata, epidermal valves facilitating plant-atmosphere gas exchange, represent a powerful model for understanding cell fate and pattern in plants. Core basic helix-loop-helix (bHLH) transcription factors regulating stomatal development were identified in Arabidopsis, but this dicot's developmental pattern and stomatal morphology represent only one of many possibilities in nature. Here, using unbiased forward genetic screens, followed by analysis of reporters and engineered mutants, we show that stomatal initiation in the grass Brachypodium distachyon uses orthologs of stomatal regulators known from Arabidopsis but that the function and behavior of individual genes, the relationships among genes, and the regulation of their protein products have diverged. Our results highlight ways in which a kernel of conserved genes may be alternatively wired to produce diversity in patterning and morphology and suggest that the stomatal transcription factor module is a prime target for breeding or genome modification to improve plant productivity.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Brachypodium/genética , Proteínas de Plantas/genética , Estomas de Plantas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Alineación de Secuencia
19.
BMC Plant Biol ; 18(1): 60, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636017

RESUMEN

BACKGROUND: Mitogen-activated protein kinases (MAPK) signaling affects many processes, some of which have different outcomes in the same cell. In Arabidopsis, activation of a MAPK cascade consisting of YODA, MKK4/5 and MPK3/6 inhibits early stages of stomatal developmental, but the ability to halt stomatal progression is lost at the later stage when guard mother cells (GMCs) transition to guard cells (GCs). Rather than downregulating cascade components, stomatal precursors must have a mechanism to prevent late stage inhibition because the same MKKs and MPKs mediate other physiological responses. RESULTS: We artificially activated the MAPK cascade using MKK7, another MKK that can modulate stomatal development, and found that inhibition of stomatal development is still possible in GMCs. This suggests that MKK4/5, but not MKK7, are specifically prevented from inhibiting stomatal development. To identify regions of MKKs responsible for cell-type specific regulation, we used a domain swap approach with MKK7 and a battery of in vitro and in vivo kinase assays. We found that N-terminal regions of MKK5 and MKK7 establish specific signal-to-output connections like they do in other organisms, but they do so in combination with previously undescribed modules in the C-terminus. One of these modules encoding the GMC-specific regulation of MKK5, when swapped with sequences from the equivalent region of MKK7, allows MKK5 to mediate robust inhibition of late stomatal development. CONCLUSIONS: Because MKK structure is conserved across species, the identification of new MKK specificity modules and signaling rules furthers our understanding of how eukaryotes create specificity in complex biological systems.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , MAP Quinasa Quinasa 7/genética , MAP Quinasa Quinasa 7/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
20.
Nature ; 482(7385): 419-22, 2012 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-22307275

RESUMEN

Plants must coordinate the regulation of biochemistry and anatomy to optimize photosynthesis and water-use efficiency. The formation of stomata, epidermal pores that facilitate gas exchange, is highly coordinated with other aspects of photosynthetic development. The signalling pathways controlling stomata development are not fully understood, although mitogen-activated protein kinase (MAPK) signalling is known to have key roles. Here we demonstrate in Arabidopsis that brassinosteroid regulates stomatal development by activating the MAPK kinase kinase (MAPKKK) YDA (also known as YODA). Genetic analyses indicate that receptor kinase-mediated brassinosteroid signalling inhibits stomatal development through the glycogen synthase kinase 3 (GSK3)-like kinase BIN2, and BIN2 acts upstream of YDA but downstream of the ERECTA family of receptor kinases. Complementary in vitro and in vivo assays show that BIN2 phosphorylates YDA to inhibit YDA phosphorylation of its substrate MKK4, and that activities of downstream MAPKs are reduced in brassinosteroid-deficient mutants but increased by treatment with either brassinosteroid or GSK3-kinase inhibitor. Our results indicate that brassinosteroid inhibits stomatal development by alleviating GSK3-mediated inhibition of this MAPK module, providing two key links; that of a plant MAPKKK to its upstream regulators and of brassinosteroid to a specific developmental output.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Brasinoesteroides/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/crecimiento & desarrollo , Proteínas Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Estomas de Plantas/enzimología , Estomas de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Nicotiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA