Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Med Biol Eng ; 40(3): 419-427, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32494235

RESUMEN

PURPOSE: Articular cartilage is known to be mechanically anisotropic. In this paper, the acoustic anisotropy of bovine articular cartilage and the effects of freeze-thaw cycling on acoustic anisotropy were investigated. METHODS: We developed apparatus and methods that use a magnetic L-shaped sample holder, which allowed minimal handling of a tissue, reduced the number of measurements compared to previous studies, and produced highly reproducible results. RESULTS: SOS was greater in the direction perpendicular to the articular surface compared to the direction parallel to the articular surface (N=17, P = 0.00001). Average SOS was 1,758 ± 107 m/s perpendicular to the surface, and 1,617 ± 55 m/s parallel to it. The average percentage difference in SOS between the perpendicular and parallel directions was 8.2% (95% CI: 5.4% to 11%). Freeze-thaw cycling did not have a significant effect on SOS (P>0.4). CONCLUSION: Acoustic measurement of tissue properties is particularly attractive for work in our laboratory since it has the potential for nondestructive characterization of the properties of developing engineered cartilage. Our approach allowed us to observe acoustic anisotropy of articular cartilage rapidly and reproducibly. This property was not significantly affected by freeze-thawing of the tissue samples, making cryopreservation practical for these assays.

2.
Tissue Eng Part C Methods ; 24(8): 443-456, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29999475

RESUMEN

Previous investigations have shown that tissue-engineered articular cartilage can be damaged under a combination of compression and sliding shear. In these cases, damage was identified in histological sections after a test was completed. This approach is limited, in that it does not identify when damage occurred. This especially limits the utility of an assay for evaluating damage when comparing modifications to a tissue-engineering protocol. In this investigation, the feasibility of using ultrasound (US) to detect damage as it occurs was investigated. US signals were acquired before, during, and after sliding shear, as were stereomicroscope images of the cartilage surface. Histology was used as the standard for showing if a sample was damaged. We showed that US reflections from the surface of the cartilage were attenuated due to roughening following sliding shear. Furthermore, it was shown that by scanning the transducer across a sample, surface roughness and erosion following sliding shear could be identified. Internal delamination could be identified by the appearance of new echoes between those from the front and back of the sample. Thus, it is feasible to detect damage in engineered cartilage using US.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Cartílago Articular/patología , Estrés Mecánico , Ingeniería de Tejidos/métodos , Ultrasonografía , Animales , Bovinos , Fuerza Compresiva , Conejos , Propiedades de Superficie , Soporte de Peso
3.
J Biomed Mater Res A ; 75(1): 168-74, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16052509

RESUMEN

Polyoxymethylene (POM, acetal homopolymer, polyacetal), commercialized as Delrin by DuPont, is an engineering resin with mechanical properties that make it useful for the prototyping and manufacture of laboratory apparatus. These properties include excellent, "metal-like," machining characteristics and dimensional stability, as well as thermal stability, which allows steam sterilization. Historically, POM has been used widely, including as a surgical implant material. For these reasons, we have used this plastic as a media-wetted component in a tissue-engineering bioreactor, with good results. However, a study by LaIuppa et al.5 suggested that POM is unsuitable for use in a cell culture environment (LaIuppa et al. J Biomed Mater Res 1997;36:347-359). POM is based on the polymerization of formaldehyde, and, in addition, contains stabilizers and/or fillers. All of these could potentially be released into the medium, e.g., as formaldehyde or other thermal breakdown products, especially upon repeated autoclaving. The cited report thus appeared plausible, although contrary to our observations. In this study, we specifically assessed whether media conditioned by long-term exposure to machined white POM had a negative effect on the proliferation and chondrogenic differentiation of human mesenchymal stem cells (MSCs). We selected this cell system, as cartilage tissue engineering is the primary application of our bioreactor system. The POM samples were steam-autoclaved 1 to 20 times, to assess the possibility of any toxic thermal breakdown product release into the media. We found that MSCs did not attach directly to machined POM. Because cells that escape from the tissue construct cannot colonize the reactor and compete for nutrients, this is a desirable characteristic of a material used in a tissue-engineering bioreactor. Furthermore, the use of POM-conditioned media had no detectable impact on the proliferation rate of MSCs measured over a one-week period; nor was any effect on chondrogenic differentiation observed at up to 3 weeks in culture. In summary, the use of POM as a culture medium-wetted component appears to be innocuous, at least for human MSCs. The contrast of these findings to those of LaIuppa et al.5 may reflect a cell-type specific sensitivity, or may be due to different handling of the material.


Asunto(s)
Materiales Biocompatibles/química , Reactores Biológicos , Plásticos/química , Resinas Sintéticas/química , Ingeniería de Tejidos/métodos , Acetales/química , Cartílago/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Medios de Cultivo/química , Medios de Cultivo/farmacología , Medios de Cultivo Condicionados/farmacología , Formaldehído/química , Calor , Humanos , Inmunohistoquímica , Células Madre Mesenquimatosas/citología , Polímeros/química , Sensibilidad y Especificidad , Células Madre/citología , Factores de Tiempo
4.
Ann Biomed Eng ; 39(10): 2521-30, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21773854

RESUMEN

The feasibility of using ultrasound technology as a noninvasive, nondestructive method for evaluating the mechanical properties of engineered weight-bearing tissues was evaluated. A fixture was designed to accurately and reproducibly position the ultrasound transducer normal to the test sample surface. Agarose hydrogels were used as phantoms for cartilage to explore the feasibility of establishing correlations between ultrasound measurements and commonly used mechanical tissue assessments. The hydrogels were fabricated in 1-10% concentrations with a 2-10 mm thickness. For each concentration and thickness, six samples were created, for a total of 216 gel samples. Speed of sound was determined from the time difference between peak reflections and the known height of each sample. Modulus was computed from the speed of sound using elastic and poroelastic models. All ultrasonic measurements were made using a 15 MHz ultrasound transducer. The elastic modulus was also determined for each sample from a mechanical unconfined compression test. Analytical comparison and statistical analysis of ultrasound and mechanical testing data was carried out. A correlation between estimates of compressive modulus from ultrasonic and mechanical measurements was found, but the correlation depended on the model used to estimate the modulus from ultrasonic measurements. A stronger correlation with mechanical measurements was found using the poroelastic rather than the elastic model. Results from this preliminary testing will be used to guide further studies of native and engineered cartilage.


Asunto(s)
Módulo de Elasticidad , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ingeniería de Tejidos/métodos , Ultrasonografía/métodos , Algoritmos , Cartílago/diagnóstico por imagen , Fuerza Compresiva , Sefarosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA