Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Planta ; 257(3): 51, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36757512

RESUMEN

MAIN CONCLUSION: The polyploidization of Hippeastrum papilio influences its primary and secondary metabolism including the biosynthesis of bioactive alkaloids. Hippeastrum papilio is an ornamental plant that has advantages in comparison to the currently used plants for the extraction of galanthamine, a natural compound used for the cognitive treatment of Alzheimer's disease. In the present study, an autotetraploid line of H. papilio was induced for the first time, after treatment with 0.05% colchicine for 48 h. The chromosome number in diploids was found to be 2n = 2x = 22 and for autotetraploids 2n = 4x = 44. The flow cytometric analyses detected a DNA C-value of 14.88 ± 0.03 pg (1C) in diploids and 26.57 ± 0.12 pg in autotetraploids. The morphological, cytological, and phytochemical studies showed significant differences between diploids and autotetraploids. The length and width of stomata in autotetraploids were 22.47% and 17.94%, respectively, larger than those observed in the diploid leaves. The biomass of one-year-old autotetraploid H. papilio plants was reduced by 53.99% for plants' fresh weight, 56.53% for leaves' fresh weight, and 21.70% for bulb diameter. The GC-MS analysis of methanol extracts from one-year-old diploid and autotetraploid H. papilio plants revealed over 60 primary and secondary metabolites including alkaloids, phenolic acids, sterols, saccharides, and alcohols, among others. Principal component analysis of the metabolite profiles indicates a divergence of the metabolism between diploid and autotetraploid plants. The content of galanthamine and haemanthamine was found to be 49.73% and 80.10%, respectively, higher in the leaves of autotetraploids, compared to the diploid ones. The biosynthesis of the saccharides shows a tendency to be upregulated in tetraploid plants, while that of phenolic acids was downregulated. Polyploidization of H. papilio creates possibilities for further crop improvement aimed at high-galanthamine-producing genotypes.


Asunto(s)
Alcaloides , Diploidia , Galantamina , Plantas , Tetraploidía , Fitoquímicos
2.
Rapid Commun Mass Spectrom ; 37(12): e9506, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36942466

RESUMEN

RATIONALE: Gas chromatography-mass spectrometry (GC-MS) is the most frequently applied technique for analyzing Amaryllidaceae alkaloids in plant extracts. Having these compounds, known for their potent bioactivities, is a distinctive chemotaxonomic feature of the Amaryllidoideae subfamily (Amaryllidaceae). The Amaryllidaceae alkaloids of homolycorine type with a C3-C4 double bond generally show molecular and diagnostic ions at the high-mass region with low intensity in the EIMS mode, leading to problematic identification in complex plant extracts. METHODS: Eleven standard homolycorine-type alkaloids (isolated and identified by 1D and 2D nuclear magnetic resonance) were subjected to separation with GC and studied with electron impact mass spectrometry (EIMS) including single quadrupole (GC-EIMS), tandem (GC-EIMS/MS), and high-resolution (GC-HR-EIMS) detectors, as well as with chemical ionization mass spectrometry (GC-CIMS). Alkaloid fractions from two Hippeastrum species and Clivia miniata were subjected to GC-EIMS and GC-CIMS for alkaloid identification. RESULTS: GC-EIMS in combination with GC-CIMS provided significant structural information of homolycorine-type alkaloids with C3-C4 double bond, facilitating their unambiguous identification. Based on the obtained typical fragmentation, other 11 homolycorine-type compounds were identified in extracts from two Hippeastrum species by parallel GC-EIMS, GC-CIMS, and liquid chromatography-electrospray ionization time-of-flight mass spectrometry and in extracts from C. miniata by GC-EIMS. CONCLUSIONS: GC-MS can be successfully applied for the identification of new and known homolycorine-type alkaloids, among others within the Amaryllidoideae subfamily, as well as for chemotaxonomical and chemoecological studies.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Alcaloides de Amaryllidaceae/química , Cromatografía de Gases y Espectrometría de Masas , Alcaloides/química , Extractos Vegetales/química
3.
Molecules ; 28(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37513280

RESUMEN

The genus Clinanthus Herb. is found in the Andes Region (South America), mainly in Peru, Ecuador, and Bolivia. These plants belong to the Amaryllidaceae family, specifically the Amaryllidoideae subfamily, which presents an exclusive group of alkaloids known as Amaryllidaceae alkaloids that show important structural diversity and pharmacological properties. It is possible to find some publications in the literature regarding the botanical aspects of Clinanthus species, although there is little information available about their chemical and biological activities. The aim of this work was to obtain the alkaloid profile and the anti-cholinesterase activity of four different samples of Clinanthus collected in South America: Clinanthus sp., Clinanthus incarnatus, and Clinanthus variegatus. The alkaloid extract of each sample was analyzed by gas chromatography coupled with mass spectrometry (GC-MS), and their potential against the enzymes acetyl- and butyrylcholinesterase were evaluated. Thirteen alkaloids have been identified among these species, while six unidentified structures have also been detected in these plants. The alkaloid extract of the C. variegatus samples showed the highest structural diversity as well as the best activity against AChE, which was likely due to the presence of the alkaloid sanguinine. The results suggest this genus as a possible interesting new source of Amaryllidaceae alkaloids, which could contribute to the development of new medicines.


Asunto(s)
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Alcaloides de Amaryllidaceae/farmacología , Butirilcolinesterasa/química , Amaryllidaceae/química , Alcaloides/química , Inhibidores de la Colinesterasa/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , América del Sur
4.
Molecules ; 27(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36558039

RESUMEN

Gardenia jasminoides Ellis is an aromatic and medicinal plant of high economic value. Much research has focused on the phytochemistry and biological activities of Gardenia fruit extracts; however, the potential of the Gardenia plant in vitro cultures used as mass production systems of valuable secondary metabolites has been understudied. This paper presents data on metabolite profiling (GC/MS and HPLC), antioxidant activities (DPPH, TEAC, FRAP, and CUPRAC), and SSR profiles of G. jasminoides plant leaves and in vitro cultures with different levels of differentiation (shoots, callus, and cell suspension). The data show strong correlations (r = 0.9777 to r = 0.9908) between antioxidant activity and the concentrations of chlorogenic acid, salicylic acid, rutin, and hesperidin. Eleven co-dominant microsatellite simple sequence repeats (SSRs) markers were used to evaluate genetic variations (average PIC = 0.738 ± 0.153). All of the investigated Gardenia in vitro cultures showed high genetic variabilities (average Na = 5.636 ± 2.157, average Ne = 3.0 ± 1.095). This is the first report on a study on metabolite profiles, antioxidant activities, and genetic variations of G. jasminoides in vitro cultures with different levels of differentiation.


Asunto(s)
Gardenia , Plantas Medicinales , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión , Diferenciación Celular , Frutas , Extractos Vegetales/farmacología
5.
Molecules ; 27(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35630613

RESUMEN

Acetylcholinesterase (AChE) is one of the classical targets in the treatment of Alzheimer's disease (AD). Inhibition of AChE slows down the hydrolysis of acetycholine and increases choline levels, improving the cognitive function. The achieved success of plant-based natural drugs acting as AChE inhibitors, such as galantamine (GAL) from Galanthus genus and huperzine A from Huperzia serrate (approved drug in China), in the treatment of AD, and the fact that natural compounds (NCs) are considered as safer and less toxic compared to synthetic drugs, led us to screen the available NCs (almost 150,000) in the ZINC12 database for AChE inhibitory activity. The compounds were screened virtually by molecular docking, filtered for suitable ADME properties, and 32 ligands from 23 structural groups were selected. The stability of the complexes was estimated via 1 µs molecular dynamics simulation. Ten compounds formed stable complexes with the enzyme and had a vendor and a reasonable price per mg. They were tested for AChE inhibitory and antioxidant activity. Five compounds showed weak AChE inhibition and three of them exhibited high antioxidant activity.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Acetilcolinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Inhibidores de la Colinesterasa/química , Galantamina/farmacología , Humanos , Simulación del Acoplamiento Molecular
6.
Rapid Commun Mass Spectrom ; 35(14): e9116, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33928691

RESUMEN

RATIONALE: Narcissus cv. Hawera has been found to biosynthesize some Sceletium-type alkaloids with antidepressant and anxiolytic activities. This ornamental plant has been poorly studied as a source of bioactive alkaloids including some contraversive reports on in vitro and intact plants. In this study, a detailed GC-MS characterization of its alkaloid fractions is presented. METHODS: GC-MS was used for the identification of compounds in the alkaloid fractions. Both underivatized and silylated samples were analyzed simultaneously. Elevated plus maze and tail suspension tests were used to assay the anxiolytic and antidepressant activities. Ellman's and MTT-dye reduction assays were used to evaluate the acetylcholinesterase (AChE) inhibitory and cytotoxicity activities, respectively. RESULTS: Of the 29 alkaloids, 13 of Sceletium-type were detected. Two new alkaloids were identified as 2-oxo-mesembrine and 2-oxo-epi-mesembrenol. Lycorine was found as a major compound (43.5%) in the crude silylated methanol extract. After the elimination of lycorine by pre-crystallization, the major alkaloids were 40.8% 6-epi-mesembranol, 16.2% 6-epi-mesembrenol, and 13.8% sanguinine. This fraction showed anxiolytic and antidepressant-like activities as well as potent AChE inhibitory and antineoplastic activities. CONCLUSIONS: Silylation of the alkaloid fractions from Narcissus cv. Hawera provides better separation, structural information, and improved sensitivity for compounds with two and more hydroxyl groups. The lycorine-free alkaloid fraction shows a great potential for further pharmacological studies.


Asunto(s)
Alcaloides , Cromatografía de Gases y Espectrometría de Masas/métodos , Narcissus/química , Extractos Vegetales/química , Aizoaceae , Alcaloides/análisis , Alcaloides/farmacología , Alcaloides/toxicidad , Amaryllidaceae , Animales , Ansiolíticos/análisis , Ansiolíticos/farmacología , Ansiolíticos/toxicidad , Conducta Animal/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos ICR
7.
Physiol Plant ; 152(4): 675-87, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24735127

RESUMEN

Desiccation tolerance is among the most important parameters for crop improvement under changing environments. Resurrection plants are useful models for both theoretical and practical studies. We performed metabolite profiling via gas chromatography coupled with mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) and analyzed the antioxidant capacity of the endemic resurrection plant Haberlea rhodopensis at desiccation and recovery. More than 100 compounds were evaluated. Stress response included changes in both primary and secondary metabolic pathways. The high amounts of the specific glycoside myconoside and some phenolic acids - e.g. syringic and dihydrocaffeic acid under normal conditions tend to show their importance for the priming of H. rhodopensis to withstand severe desiccation and oxidative stress. The accumulation of sucrose (resulting from starch breakdown), total phenols, ß-aminoisobutyric acid, ß-sitosterol and α-tocopherol increased up to several times at later stages of desiccation. Extracts of H. rhodopensis showed high antioxidant capacity at stress and normal conditions. Myconoside was with the highest antioxidant properties among tested phenolic compounds. Probably, the evolution of resurrection plants under various local environments has resulted in unique desiccation tolerance with specific metabolic background. In our case, it includes the accumulation of a relatively rare compound (myconoside) that contributes alone and together with other common metabolites. Further systems biology studies on the involvement of carbohydrates, phenolic acids and glycosides in the desiccation tolerance and antioxidant capacity of H. rhodopensis will definitely help in achieving the final goal - improving crop drought tolerance.


Asunto(s)
Antioxidantes/metabolismo , Magnoliopsida/fisiología , Metabolómica , Estrés Fisiológico , Agua/fisiología , Ácidos Aminoisobutíricos/metabolismo , Craterostigma/fisiología , Desecación , Fenoles/metabolismo , Hojas de la Planta/metabolismo , Sitoesteroles/metabolismo , alfa-Tocoferol/metabolismo
8.
Z Naturforsch C J Biosci ; 79(3-4): 73-79, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38516999

RESUMEN

The Sceletium-type alkaloids, known for their anxiolytic and antidepressant activities, have been recently found to be biosynthesized in Narcissus cv. Hawera, which is largely used as an ornamental plant. An alkaloid fraction enriched with Sceletium-type alkaloids from the plant has shown promising antidepressant and anxiolytic activities. In the present study, qualitative and quantitative analyses of the alkaloids in the plant organs were performed during one vegetation season by GC-MS. The alkaloid pattern and total alkaloid content was found to depend strongly on the stage of development and plant organ. The alkaloid content of bulbs was found to be highest during the dormancy period and lowest in sprouting bulbs. The leaves showed the highest alkaloid content during the intensive vegetative growth and lowest during flowering. In total, 13 alkaloids were detected in the methanol extracts of Narcissus cv. Hawera, six Sceletium-type and seven typical Amaryllidaceae alkaloids. Major alkaloids in the alkaloid pattern were lycorine, 6-epi-mesembrenol, mesembrenone, sanguinine, and galanthamine. The leaves of flowering plants were found to have the highest amount of 6-epi-mesembrenol. Mesembrenone was found to be dominant alkaloid in the leaves of sprouting bulbs and in the flowers. Considering the biomass of the plant, the dormant bulbs are the best source of alkaloid fractions enriched with 6-epi-mesembrenol. The flowers and the young leaves can be used for preparation of alkaloid fractions enriched with mesembrenone. The results indicates that Narcissus cv. Hawera is an emerging source of valuable bioactive compounds and its utilization can be extended as a medicinal plant.


Asunto(s)
Alcaloides , Alcaloides Indólicos , Narcissus , Fenantridinas , Hojas de la Planta , Narcissus/química , Narcissus/metabolismo , Narcissus/crecimiento & desarrollo , Alcaloides/metabolismo , Alcaloides/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Flores/química , Flores/metabolismo , Flores/crecimiento & desarrollo , Extractos Vegetales/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Alcaloides de Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/química
9.
J Plant Physiol ; 296: 154223, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507926

RESUMEN

Hippeastrum papilio (Amaryllidaceae) is a promising new source of galanthamine - an alkaloid used for the cognitive treatment of Alzheimer's disease. The biosynthesis and accumulation of alkaloids are tissue - and organ-specific. In the present study, histochemical localization of alkaloids in H. papilio's plant organs with Dragendorff's reagent, revealed their presence in all studied samples. Alkaloids were observed in vascular bundles, vacuoles, and intracellular spaces, while in other plant tissues and structures depended on the plant organ. The leaf parenchyma and the vascular bundles were indicated as alkaloid-rich structures which together with the high proportion of alkaloids in the phloem sap (49.3% of the Total Ion Current - TIC, measured by GC-MS) indicates the green tissues as a possible site of galanthamine biosynthesis. The bulbs and roots showed higher alkaloid content compared to the leaf parts. The highest alkaloid content was found in the inner bulb part. GC-MS metabolite profiling of H. papilio's root, bulb, and leaves revealed about 82 metabolites (>0.01% of TIC) in the apolar, polar, and phenolic acid fractions, including organic acids, fatty acids, sterols, sugars, amino acids, free phenolic acids, and conjugated phenolic acids. The most of organic and fatty acids were in the peak part of the root, while the outermost leaf was enriched with sterols. The outer and middle parts of the bulb had the highest amount of saccharides, while the peak part of the middle leaf had most of the amino acids, free and conjugated phenolic acids.


Asunto(s)
Alcaloides , Amaryllidaceae , Galantamina , Extractos Vegetales , Inhibidores de la Colinesterasa/química , Ácidos Grasos , Esteroles
10.
Metabolites ; 14(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38393005

RESUMEN

Resurrection plant species are a group of higher plants whose vegetative tissues are able to withstand long periods of almost full desiccation and recover quickly upon rewatering. Apart from being a model system for studying desiccation tolerance, resurrection plant species appear to be a valuable source of metabolites, with various areas of application. A significant number of papers have been published in recent years with respect to the extraction and application of bioactive compounds from higher resurrection plant species in various test systems. Promising results have been obtained with respect to antioxidative and antiaging effects in various test systems, particularly regarding valuable anticancer effects in human cell lines. Here, we review the latest advances in the field and propose potential mechanisms of action of myconoside-a predominant secondary compound in the European members of the Gesneriaceae family. In addition, we shed light on the possibilities for the sustainable use of natural products derived from resurrection plants.

11.
Chem Biodivers ; 10(7): 1220-38, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23847067

RESUMEN

The aim of this work was to investigate the alkaloid patterns of Lapiedra martinezii and their relation to biogeography and phenology focused in a phylogenetic comparison. Plants from 14 populations of L. martinezii, covering almost its entire distribution area, were subjected to morphological, ecological, and phytochemical analysis. Experiments for different alkaloid-type content are proposed as a new tool for analysis of plant distribution. Several plants were transplanted for weekly observation of their phenological changes, and alkaloids from different plant organs were extracted, listed, and compared. The alkaloid pattern of L. martinezii comprises 49 compounds of homolycorine, lycorine, tazettine, haemantamine, and narciclasine types. The populations located in the north and south margins of the distribution area displayed alkaloid patterns different from those of the central area. Changes in these patterns during their phenological cycle may be related to a better defence for plant reproduction. L. martinezii is an old relict plant, and it has maintained some of the more primitive morphological features and alkaloid profiles of the Mediterranean Amaryllidaceae. The variations in alkaloid content observed could be interpreted in a phylogenetic sense, and those found in their phenological changes, in an adaptive one.


Asunto(s)
Alcaloides/química , Liliaceae/química , Alcaloides/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Liliaceae/clasificación , Filogenia , Filogeografía , Hojas de la Planta/química , Raíces de Plantas/química , Análisis de Componente Principal
12.
Z Naturforsch C J Biosci ; 68(3-4): 118-24, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23819307

RESUMEN

GC-MS (gas chromatography-mass spectrometry) analyses of alkaloids in the aerial parts and bulbs of Galanthus rizehensis Stern (Amaryllidaceae), collected during two different vegetation periods, was performed. Twenty three alkaloids were identified in four different alkaloid extracts. Acetylcholinesterase (AChE) inhibitory activities of the alkaloid extracts were tested. Both the highest alkaloid diversity and the most potent inhibitory activity (IC50 12.94 microg/ml) were obtained in extracts from the bulbs of G. rizehensis collected during the fruiting period.


Asunto(s)
Acetilcolinesterasa/efectos de los fármacos , Inhibidores de la Colinesterasa/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas/métodos , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología
13.
Plants (Basel) ; 12(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37836231

RESUMEN

The application of natural products for pest control is important in modern farming. In the present study, Artemisia santonicum L. and Artemisia lerchiana Weber essential oil and exudate profiles were determined, and their potential as inhibitors of seed germination, acetylcholinesterase, and phytopathogenic mycelium growth were evaluated. Essential oils (EO) were obtained via hydrodistillation and exudates (AE) by washing aerial parts of the species with acetone. EO and AE's composition was identified using GC/MS. Eucalyptol (1,8-cineole) and camphor were found to be the main components of A. lerchiana EO, while ß-pinene, trans-pinocarveol, α-pinene, α-terpineol, and spathulenol were established as major compounds of A. santonicum EO. Strong inhibition on Lolium perenne seed germination was found at 2 µL/mL and 5 mg/mL using aqueous solutions of EO and AE, respectively. An inhibitory effect on acetylcholinesterase was established, with an IC50 value of 64.42 and 14.60 µg/mL for EO and 0.961, >1 mg/mL for the AE of A. lerchiana and A. santonicum, respectively. The low inhibition on the mycelium growth of studied phytopathogenic fungi was established by applying 2 µL of EO and 15 µL of 100 mg/mL of AE, with the exception of A. lerchiana AE against Botrytis cinerea. These results show that the studied EO and AE exhibited strong phytotoxic and AChE inhibitory activities, providing new data for these species.

14.
Molecules ; 17(11): 13473-82, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23149565

RESUMEN

The Amaryllidaceae family is well known for its pharmacologically active alkaloids. An important approach to treat Alzheimer's disease involves the inhibition of the enzyme acetylcholinesterase (AChE). Galanthamine, an Amaryllidaceae alkaloid, is an effective, selective, reversible, and competitive AchE inhibitor. This work was aimed at studying the alkaloid composition of four wild Argentinian Amarillydaceae species for the first time, as well as analyzing their inhibitory activity on acetylcholinesterase. Alkaloid content was characterized by means of GC-MS analysis. Chloroform basic extracts from Habranthus jamesonii, Phycella herbertiana, Rhodophiala mendocina and Zephyranthes filifolia collected in the Argentinian Andean region all contained galanthamine, and showed a strong AChE inhibitory activity (IC50 between 1.2 and 2 µg/mL). To our knowledge, no previous reports on alkaloid profiles and AChEIs activity of wild Argentinian Amarillydaceae species have been publisihed. The demand for renewable sources of industrial products like galanthamine and the need to protect plant biodiversity creates an opportunity for Argentinian farmers to produce such crops.


Asunto(s)
Alcaloides/química , Inhibidores de la Colinesterasa/química , Galantamina/química , Liliaceae/química , Extractos Vegetales/química , Alcaloides/aislamiento & purificación , Argentina , Inhibidores de la Colinesterasa/aislamiento & purificación , Cromatografía en Capa Delgada , Galantamina/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Extractos Vegetales/aislamiento & purificación , Raíces de Plantas/química
15.
Pharm Biol ; 50(4): 529-35, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22136301

RESUMEN

CONTEXT: The marine diatoms Cocconeis scutellum Ehrenberg (Bacillariophyceae) are known to trigger apoptosis in the androgenic gland of the Mediterranean crustacean Hippolyte inermis Leach (Decapoda), affecting the shrimp's sex reversal. OBJECTIVE: The aim of this study was to evaluate a possible apoptotic effect of extracts and fractions from these microalgae also on human tissues. MATERIALS AND METHODS: The chemical profile of C. scutellum was determined by gas chromatography-mass spectrometry (GC-MS) and, afterwards, organic extracts and fractions from the diatoms were used to treat to breast cancer BT20 cells. Double labeling with annexin V-FITC and isotonic propidium iodide (PI) along with flow cytometry analysis enabled the evaluate of cell apoptosis and viability, whereas hypotonic PI staining was used to analyze the cell cycle in BT20 lines. The involvement of specific caspases was studied by Western blotting. RESULTS: Results demonstrated that the diethyl ether extract and, in particular, fraction 3, the richest fraction in eicosapentaenoic acid (EPA) from the diethyl ether extract, selectively induced apoptosis (up to 89.2% at 1 µg/well of fraction 3) and decreased viability in BT20 cells. The apoptotic effect was displayed in a concentration and time-dependent manner, by activating caspases-8 and 3, and arresting the progression of the cell cycle from S to G2-M phase. EPA alone showed similar apoptotic effects in BT20 cells. DISCUSSION AND CONCLUSION: The study demonstrates the apoptotic activity of C. scutellum diatoms on breast cancer cells and suggests their potential use as a source of apoptotic compounds.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Diatomeas/química , Ácido Eicosapentaenoico/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Western Blotting , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fraccionamiento Químico , Relación Dosis-Respuesta a Droga , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/aislamiento & purificación , Activación Enzimática , Femenino , Citometría de Flujo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Solventes/química , Factores de Tiempo
16.
Plants (Basel) ; 12(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36616241

RESUMEN

Alkanna tinctoria (L.) Tausch Boraginaceae is a medicinal plant whose root is used for its antimicrobial and anti-inflammatory properties. A. tinctoria roots have been subject to numerous studies. However, the aerial parts have been explored less. The objective of the present study was to compare the chemical profile of aerial parts and roots as well as the total alkannin content in roots of 11 populations of the species from different floristic regions of Bulgaria. Methanolic extracts from 22 samples were analyzed by GC/MS. Phenolic, fatty, and organic acids, sterols, polyols, fatty alcohols, and sugars were identified. Ononitol (4-O-methyl-myo-inositol) was found as the main compound in the aerial parts. The total alkannin content in the roots was evaluated by the spectrophotometric method and compared with that of the commercial product. Populations with high alkannin content and rich in other bioactive compounds were identified. A relatively low genetic diversity in the studied populations was observed. The present study is the first comprehensive study on metabolite profiles and genetic diversity of the Bulgarian populations of A. tinctoria. The occurrence of ononitol in the aerial parts of the species is reported for the first time, as well as the phenolic acid profiles of the species in both aerial parts and roots. The results showed that aerial parts of the plant are also promising for use as a source of valuable biologically active substances.

17.
Plants (Basel) ; 11(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36559661

RESUMEN

Plant biodiversity is an important source of compounds with medicinal properties. The alkaloid galanthamine, first isolated from Galanthus woronowii (Amaryllidaceae), is approved by the FDA for the palliative treatment of mild to moderate Alzheimer's disease due to its acetylcholinesterase (AChE) inhibitory activity. Obtaining this active pharmaceutical ingredient, still sourced on an industrial scale from the Amaryllidaceae species, is a challenge for pharmaceutical companies due to its low natural yield and the high cost of its synthesis. The aim of this work was to determine the alkaloid profile of three different Rauhia (Amaryllidaceae) species collected in Peru, and to assess the potential application of their extracts for the treatment of Alzheimer's disease. The alkaloids were identified by gas chromatography coupled to mass spectrometry (GC-MS), and the AChE inhibitory activity of the extracts was analyzed. Thirty compounds were quantified from the Rauhia species, the R. multiflora extract being the most interesting due to its high diversity of galanthamine-type structures. The R. multiflora extract was also the most active against AChE, with the half maximal inhibitory concentration (IC50) values of 0.17 ± 0.02 µg·mL-1 in comparison with the IC50 values of 0.53 ± 0.12 µg·mL-1 for galanthamine, used as a reference. Computational experiments were carried out on the activity of the galanthamine-type alkaloids identified in R. multiflora toward five different human AChE structures. The simulation of the molecules 3-O-acetylgalanthamine, 3-O-acetylsanguinine, narwedine, and lycoraminone on the 4EY6 crystal structure theoretically showed a higher inhibition of hAChE and different interactions with the active site compared to galanthamine. In conclusion, the results of this first alkaloid profiling of the Rauhia species indicate that R. multiflora is an important natural source of galanthamine-type structures and could be used as a model for the development of biotechnological tools necessary to advance the sustainable production of galanthamine.

18.
Phytother Res ; 25(11): 1686-92, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21442675

RESUMEN

Crinum zeylanicum is used in folk medicine as a rubefacient in rheumatism, a treatment for malaria or as a poison. Complex alkaloid profiles in C. zeylanicum plant organs were revealed by GC-MS analysis, including several bioactive compounds. Crinine, lycorine, 11-O-acetoxyambelline, ambelline, 6-hydroxybuphanidrine and 6-ethoxybuphanidrine (an artefact of the isolation procedure) were isolated. Crinine, 6-hydroxybuphanidrine and 6-ethoxybuphanidrine showed antiproliferative effects against human tumor cell lines, crinine being the most active (IC50 14.04 µM against HL-60/Dox). The latter compound induced apoptosis in a dose-dependent manner in HL-60 and MDA-MB-231 cell lines. Structure-activity relationships in the studied molecules indicated that the hydrogenation of the double bond at C1-C2 leads to a loss of activity, whereas substitutions at C6, C8 and C11 affect their cytotoxicity.


Asunto(s)
Alcaloides de Amaryllidaceae/farmacología , Apoptosis/efectos de los fármacos , Crinum/química , Alcaloides de Amaryllidaceae/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Células HL-60/efectos de los fármacos , Humanos , Estructura Molecular , Relación Estructura-Actividad
19.
Magn Reson Chem ; 49(10): 668-72, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21898585

RESUMEN

The Amaryllidaceae family has proven to be a rich source of active molecules. As part of an ongoing project, we report a phytochemical study of Hippeastrum morelianum (Amaryllidaceae), from which we have isolated two homolycorine-type alkaloids, the new 2α,7-dimethoxyhomolycorine (1) and the poorly described candimine (2), as well as six known alkaloids: tazettine, pretazettine, 3-epimacronine, haemanthamine, hamayne and trisphaeridine. For reference purposes, the NMR of the isolated compounds was unequivocally described, based on 2D NMR measurements including (1)H-(1)H COSY, (1)H-(1)H NOESY, HSQC and HMBC.


Asunto(s)
Alcaloides/química , Liliaceae/química , Extractos Vegetales/química , Alcaloides/aislamiento & purificación , Simulación por Computador , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética/normas , Modelos Moleculares , Estructura Molecular , Extractos Vegetales/aislamiento & purificación , Estándares de Referencia , Estereoisomerismo
20.
Chem Biodivers ; 8(1): 115-30, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21259423

RESUMEN

Seventy alkaloids of galanthamine, lycorine, homolycorine, tazettine, haemanthamine, narciclasine, and tyramine types were detected by GC/MS in 25 Galanthus elwesii and seven Galanthus nivalis populations, collected from different locations in Bulgaria. Intraspecies diversity in the alkaloid profiles regarding the main alkaloid types (chemotypes) was observed. Tyramine-type protoalkaloids (namely, hordenine and its derivatives) were dominant in 19 populations of G. elwesii. In other populations of G. elwesii, the plants accumulated mainly homolycorine-, lycorine-, and galanthamine-type alkaloids. The alkaloid profiles of G. nivalis were dominated by narciclasine-, galanthamine-, lycorine-, haemanthamine-, or tazettine-type compounds. Geographical distribution of chemotypes indicated a relationship between populations, since adjacent populations often displayed similar alkaloid profiles. The results from year-to-year sampling and transplantation experiments imply genetic determination of alkaloid synthesis in the two studied species of Galanthus.


Asunto(s)
Alcaloides/química , Galanthus/química , Alcaloides de Amaryllidaceae/química , Galantamina/química , Cromatografía de Gases y Espectrometría de Masas , Fenantridinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA