Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Chemistry ; 30(28): e202400685, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38469986

RESUMEN

Recently, chiral metal-organic coordination materials have emerged as promising candidates for a wide range of applications in chiroptoelectronics, chiral catalysis, and information encryption, etc. Notably, the chiroptical effect of coordination chromophores makes them appealing for applications such as photodetectors, OLEDs, 3D displays, and bioimaging. The direct synthesis of chiral coordination materials using chiral organic ligands or complexes with metal-centered chirality is very often tedious and costly. In the case of ionic coordination materials, the combination of chiral anions with cationic, achiral coordination compounds through noncovalent interactions may endow molecular materials with desirable chiroptical properties. The use of such a simple chiral strategy has been proven effective in inducing promising circular dichroism and/or circularly polarized luminescence signals. This concept article mainly delves into the latest advances in exploring the efficacy of such a chiral anion strategy for transforming achiral coordination materials into chromophores with superb photo- or electro-chiroptical properties. In particular, ionic small-molecular metal complexes, metal clusters, coordination supramolecular assemblies, and metal-organic frameworks containing chiral anions are discussed. A perspective on the future opportunities on the preparation of chiroptical materials with the chiral anion strategy is also presented.

2.
Chemistry ; 30(16): e202303798, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38214886

RESUMEN

Chiral organic molecules possessing high quantum yields, circular dichroism, and circularly polarized luminescence values have great potential as optically active materials for future applications. Recently, the identification of a promising class of inherently chiral compounds was reported, namely macrocyclic 1,3-butadiyne-linked pseudo-meta[2.2]paracyclophanes, displaying high circular dichroism and related gabs values albeit modest quantum yields. Increasing the quantum yields in an attempt to get bright circularly polarized light emitters, the high-yielding heterocyclization of those 1,3-butadiyne bridges resulting in macrocyclic 2,5-thienyls-linked pseudo-meta [2.2]paracyclophanes is herein described. The chiroptical properties of both, the previously reported 1,3-butadiyne, and the novel 2,5-thienyl bridged macrocycles of various sizes, are experimentally recorded, and theoretically described using density-functional theory.

3.
J Am Chem Soc ; 144(3): 1431-1444, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35025486

RESUMEN

High-throughput synthesis and screening methods were used to measure the photochemical activity of 1440 distinct heteroleptic [Ir(C^N)2(N^N)]+ complexes for the photoreduction of Sn(II) and Zn(II) cations to their corresponding neutral metals. Kinetic data collection was carried out using home-built photoreactors and measured initial rates, obtained through an automated fitting algorithm, spanned between 0-120 µM/s for Sn(0) deposition and 0-90 µM/s for Zn(0) deposition. Photochemical reactivity was compared to photophysical properties previously measured such as deaerated excited state lifetime and emission spectral data for these same complexes; however, no clear correlations among these features were observed. A formal photochemical rate law was then developed to help elucidate the observed reactivity. Initial rates were found to be directly correlated to the product of incident photon flux with three reaction elementary efficiencies: (1) the fraction of light absorbed by the photocatalyst, (2) the fraction of excited state species that are quenched by the electron donor, and (3) the cage escape efficiency. The most active catalysts exhibit high efficiencies for all three steps, and catalyst engineering requirements to maximize these elementary efficiencies were postulated. The kinetic treatment provided the mechanistic information needed to decipher the observed structure/function trends in the high-throughput work.

4.
J Am Chem Soc ; 144(25): 11189-11202, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35704840

RESUMEN

Photoredox catalysts are primarily selected based on ground and excited state properties, but their activity is also intrinsically tied to the nature of their reduced (or oxidized) intermediates. Catalyst reactivity often necessitates an inherent instability, thus these intermediates represent a mechanistic turning point that affords either product formation or side-reactions. In this work, we explore the scope of a previously demonstrated side-reaction that partially saturates one pyridine ring of the ancillary ligand in heteroleptic iridium(III) complexes. Using high-throughput synthesis and screening under photochemical conditions, we identified different chemical pathways, ultimately governed by ligand composition. The ancillary ligand was the key factor that determined photochemical stability. Following photoinitiated electron transfer from a sacrificial tertiary amine, the reduced intermediate of complexes containing 1,10-phenanthroline derivatives exhibited long-term stability. In contrast, complexes containing 2,2'-bipyridines were highly susceptible to hydrogen atom transfer and ancillary ligand modification. Detailed characterization of selected complexes before and after transformation showed differing effects on the ground and excited state reduction potentials dependent on the nature of the cyclometalating ligands and excited states. The implications of catalyst stability and reactivity in chemical synthesis was demonstrated in a model photoredox reaction.


Asunto(s)
Iridio , Fenantrolinas , Hidrógeno , Iridio/química , Ligandos
5.
J Am Chem Soc ; 143(2): 1179-1194, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33411537

RESUMEN

Steady state emission spectra and excited state lifetimes were measured for 1440 distinct heteroleptic [Ir(C^N)2(N^N)]+ complexes prepared via combinatorial parallelized synthesis; 72% of the complexes were found to be luminescent, and the emission maxima of the library spanned the visible spectrum (652-459 nm). Spectral profiles ranged from broad structureless bands to narrow emissions exhibiting vibrational substructure. Measured excited state lifetimes ranged between ∼0.1-14 µs. Automated emission spectral fitting with successive Gaussian functions revealed four distinct measured classes of excited states; in addition to well understood metal-ligand to ligand-charge transfer (3MLLCT) and ligand-centered (3LC) excited states, our classification also identified photophysical characteristics of less explored mixed 3MLLCT/3LC states. Electronic structure features obtained from DFT calculations performed on a large subset of these Ir(III) chromophores offered clear insights into the excited state properties and allowed the prediction of structure/luminescence relationships in this class of commonly used photocatalysts. Models with high prediction accuracy (R2 = 0.89) for emission color were developed on the basis of experimental data. Furthermore, different degrees of nuclear reorganization in the excited state were shown to significantly impact emission energy and excited state lifetimes.

6.
Inorg Chem ; 60(2): 774-781, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33411530

RESUMEN

Noble-metal photosensitizers and water reduction co-catalysts (WRCs) still present the highest activity in homogeneous photocatalytic hydrogen production. The search for earth-abundant alternatives is usually limited by the time required to screen new catalyst combinations; however, here, we utilize newly designed and developed high-throughput photoreactors for the parallel synthesis of novel WRCs and colorimetric screening of hydrogen evolution. This unique approach allowed rapid optimization of photocatalytic water reduction using the organic photosensitizer Eosin Y and the archetypal cobaloxime WRC [Co(GL1)2pyCl], where GL1 is dimethylglyoxime and py is pyridine. Subsequent combinatorial synthesis generated 646 unique cobalt complexes of the type [Co(LL)2pyCl], where LL is a bidentate ligand, that identified promising new WRC candidates for hydrogen production. Density functional theory (DFT) calculations performed on such cobaloxime derivative complexes demonstrated that reactivity depends on hydride affinity. Alkyl-substituted glyoximes were necessary for hydrogen production and showed increased activity when paired with ligands containing strong hydrogen-bond donors.

7.
Org Biomol Chem ; 18(29): 5617-5624, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32648871

RESUMEN

The first conceptualised class of dual-binding guanine quadruplex binders has been designed, synthesised and biophysically studied. These compounds combine diaromatic guanidinium systems and neutral tetra-phenylporphyrins (classical binding moiety for guanine quadruplexes) by means of a semi-rigid linker. An extensive screening of a variety of guanine quadruplex structures and double stranded DNA via UV-vis, FRET and CD experiments revealed the preference of the conjugates towards guanine quadruplexes. Additionally, docking studies indicate the potential dual mode of binding.


Asunto(s)
ADN/química , Guanidinas/química , Porfirinas/química , Sitios de Unión , G-Cuádruplex , Simulación del Acoplamiento Molecular , Estructura Molecular
8.
Angew Chem Int Ed Engl ; 59(37): 15947-15952, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32412664

RESUMEN

The coordination sphere of the Fe(II) terpyridine complex 1 is rigidified by fourfold interlinking of both terpyridine ligands. Profiting from an octa-aldehyde precursor complex, the ideal dimensions of the interlinking structures are determined by reversible Schiff-base formation, before irreversible Wittig olefination provided the rigidified complex. Reversed-phase HPLC enables the isolation of the all-trans isomer of the Fe(II) terpyridine complex 1, which is fully characterized. While temperature independent low-spin states were recorded with superconducting quantum interference device (SQUID) measurements for both, the open precursor 8 and the interlinked complex 1, evidence of the increased rigidity of the ligand sphere in 1 was provided by proton T2 relaxation NMR experiments. The ligand sphere fixation in the macrocyclized complex 1 even reaches a level resisting substantial deformation upon deposition on an Au(111) surface, as demonstrated by its pristine form in a low temperature ultra-high vacuum scanning tunneling microscope experiment.

9.
J Am Chem Soc ; 141(22): 8858-8867, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31038941

RESUMEN

This report describes the design and synthesis of a new class of polyfurans bearing ester side chains. The macromolecules can be synthesized using catalyst-transfer polycondensation, providing precise control over molecular weight and molecular weight distribution. Such obtained furan ester polymers are significantly more photostable than their alkyl analogues owing to the electron-withdrawing nature of the attached subunit. Most interestingly, they spontaneously fold into a compact π-stacked helix, yielding a complex multilayer cylindrical nanoparticle with a hollow, rigid, conjugated core composed of the polyfuran backbone and a soft, insulating outer layer formed by the ester side chains. The length of polymer side chains dictates the outer diameter of such nanoparticles, which for the hexyl ester groups used in the present study is equal to ∼2.3 nm. The inner cavity of the conjugated core is lined with oxygen atoms, which set its effective diameter to 0.4 nm. Furthermore, installation of bulkier, branched chiral ester side chains on the repeat unit yields structures that, upon change of solvent, can reversibly transition between an ordered chiral helical folded and disordered unfolded state.

10.
Acc Chem Res ; 51(2): 352-364, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29336548

RESUMEN

The exponential growth in published studies on phosphorescent metal complexes has been triggered by their utilization in optoelectronics, solar energy conversion, and biological labeling applications. Very recent breakthroughs in organic photoredox transformations have further increased the research efforts dedicated to discerning the inner workings and structure-property relationships of these chromophores. Initially, the principal focus was on the Ru(II)-tris-diimine complex family. However, the limited photostability and lack of luminescence tunability discovered in these complexes prompted a broadening of the research to include 5d transition metal ions. The resulting increase in ligand field splitting prevents the population of antibonding eg* orbitals and widens the energy range available for color tuning. Particular attention was given to Ir(III), and its cyclometalated, cationic complexes have now replaced Ru(II) in the vast majority of applications. At the start, this Account documents the initial efforts dedicated to the color tuning of these complexes for their application in light emitting electrochemical cells, an easy to fabricate single-layer organic light emitting device (OLED). Systematic modifications of the ligand sphere of [Ir(ppy)2bpy]+ (ppy: 2-phenylpyridine, bpy: 2,2'-bipyridine) with electron withdrawing and donating substituents allowed access to complexes with luminescence emission maxima throughout the visible spectrum exhibiting room temperature excited state lifetimes ranging from nanoseconds to dozens of microseconds and quantum yields up to 15 times that of [Ru(bpy)3]2+. The diverse photophysical properties were also beneficial when using these Ir(III) complexes for driving solar fuel-producing reactions. For instance, photocatalytic water-reduction systems were explored to gain access to efficient water splitting systems. For this purpose, a variety of water reduction catalysts were paired with libraries of Ir(III) photosensitizers in high-throughput photoreactors. This parallelized approach allowed exploration of the interplay between the diverse photophysical properties of the Ir compounds and the electron-accepting catalysts. Further work enhanced and simplified the critical electron transfer processes between these two species through the use of bridging functional groups installed on the photosensitizer. Later, a novel approach summarized in this Account explores the possibility of using Zn metal as a solar fuel. Structure-activity relationships of the light-driven reduction of Zn2+ to Zn metal are described. DFT calculations along with cyclic voltammetry were utilized to gain clear insights into the complexes' electronic structures responsible for the effective photochemical properties observed in these dyes. While [Ir(ppy)2bpy]+ and its derivatives were found to be much more photostable than the Ru(II)-tris-diimine complex family, mass spectrometry indicated that the bpy ligand still photodissociated under extensive illumination. An interesting new approach involved the substitution of the bidentate 2,2'-bipyridine with a stronger chelating terpyridine ligand. This approach leaves room for one 2-phenylpyridine ligand and a third, anionic ligand, either Cl- or CN-. This Account reviews the effect of structural modifications on the photophysical properties of these [Ir(tpy)(ppy)X]+ complexes and corroborates the findings with the results obtained through DFT modeling. These complexes found application in photocatalytic CO2 reductions as well as a solvent tolerant light-absorber for the photogeneration of hydrogen. It was also documented that the robustness of these dyes in photoredox processes supersedes those of the commercially available [Ir(ppy)2(dtbbpy)]PF6 and [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 complexes pioneered in the Bernhard laboratory.

11.
Chemistry ; 25(18): 4590-4647, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30387906

RESUMEN

Nonconjugated hydrocarbons, like bicyclo[1.1.1]pentane, bicyclo[2.2.2]octane, triptycene, and cubane are a unique class of rigid linkers. Due to their similarity in size and shape they are useful mimics of classic benzene moieties in drugs, so-called bioisosteres. Moreover, they also fulfill an important role in material sciences as linear linkers, in order to arrange various functionalities in a defined spatial manner. In this Review article, recent developments and usages of these special, rectilinear systems are discussed. Furthermore, we focus on covalently linked, nonconjugated linear arrangements and discuss the physical and chemical properties and differences of individual linkers, as well as their application in material and medicinal sciences.


Asunto(s)
Hidrocarburos Cíclicos/química , Bioquímica , Catálisis , Química Farmacéutica , Hidrocarburos Cíclicos/síntesis química , Ciencia de los Materiales , Termodinámica
12.
Chemistry ; 25(28): 6941-6954, 2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-30742711

RESUMEN

Previous studies by Desiraju and co-workers have implicated the acidic hydrogen atoms of cubane as a support network for hydrogen bonding groups. Herein we report a detailed structural analysis of all currently available 1,4-disubstituted cubane structures with an emphasis on how the cubane scaffold interacts in its solid-state environment. In this regard, the interactions between the cubane hydrogen atoms and acids, ester, halogens, ethynyl, nitrogenous groups, and other cubane scaffolds were cataloged. The goal of this study was to investigate the potential of cubane as a substitute for phenyl. This could be achieved by analyzing all contacts that are directed by the cubane hydrogen atoms in the X-ray crystal structures. As a result, we have established several new cubane interaction profiles, such as the catemer formation seen in esters, the preferences of halogen-hydrogen contacts over direct halogen bonding, and the stabilizing effects caused by the cubane hydrogen atoms interacting with ethynyl groups. These interaction profiles can then be used as a guide for designing cubane bioisosteres of known materials and drugs containing phenyl moieties.

13.
Chemistry ; 24(24): 6386-6398, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29441624

RESUMEN

The synthetic versatility of pyridylidene amide (PYA) ligands has been exploited to prepare and evaluate a diverging series of iridium complexes containing C,N-bidentate chelating aryl-PYA ligands for water oxidation catalysis. The phenyl-PYA lead structure 1 was modified (i) electronically through introduction of one, two, or three electron-donating methoxy substituents on the aryl ring, (ii) by incorporating long aliphatic chains to the pyridyl fragment of the PYA unit, and (iii) by altering the PYA positions from para-PYA to its ortho- and meta-isomers. Electrochemistry indicated no substantial electronic effect of the aliphatic chains, and only minor changes of the electron density at iridium when modifying the aryl ligand site, yet substantial alteration if the PYA ligand is the ortho- (E1/2 =+0.72 V), para- (E1/2 =+0.64 V), or meta-isomer (E1/2 =+0.56 V vs. saturated calomel electrode; SCE). In water oxidation catalysis, the long alkyl chains did not induce any rate enhancement compared with the phenyl-PYA lead compound, whereas MeO groups incorporated in the aryl group enhanced the catalytic activity from a turnover frequency (TOFmax )=1600 h-1 in the original Ph-PYA system gradually as more MeO groups were introduced up to a TOFmax =3300 h-1 for a tris(MeO)-substituted aryl-PYA system. The variation of the PYA substitution had only a minor impact on catalytic activity and revealed only a weak trend in the sequence ortho>meta>para. The high activity of the tris(MeO) system and the ortho-PYA isomer were attributed to efficient hydrogen bonding, which assists O-H bond activation and proton transfer. Remarkably, merging of the two optimized motifs, that is, an aryl unit with three MeO substituents and the PYA as the ortho isomer, into a single new aryl-PYA ligand system failed to improve the catalytic activity. Computational analysis suggests too much congestion at the active site, which hinders catalytic turnover. These results illustrate the complexity of ligand design and the subtle effects at play in water oxidation catalysis.

14.
Chemistry ; 24(5): 1026-1030, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29048763

RESUMEN

Herein, an improved methodology for aryl-cubane cross-coupling is reported. The peculiarities of the cubane core and its behavior during cross-coupling conditions were analyzed, while the versatility of this adapted Baran cross-coupling methodology was demonstrated by the synthesis of various aryl-cubane systems, including coupling products of cubanes and porphyrins. Furthermore, arm extension of alkynyl-cubanes by Sonogashira reactions is demonstrated, showcasing the first proof of the stability of the cubane core in the presence of palladium catalysts.

15.
Inorg Chem ; 56(17): 10162-10171, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28488856

RESUMEN

A unique microemulsion-based photocatalytic water reduction system is demonstrated. Iridium- and rhodium-based metallosurfactants, namely, [Ir(ppy)2(dhpdbpy)]Cl and [Rh(dhpdbpy)2Cl2]Cl (where ppy = 2-phenylpyridine and dhpdbpy = 4,4'-diheptadecyl-2,2'-bipyridine), were employed as photosensitizer and proton reducing catalyst, respectively, along with oxalic acid as a sacrificial reductant in a toluene/water biphasic mixture. The addition of 1-octylamine is proposed to initiate the reaction, by coupling with oxalic acid to form an ion pair, which acts as an additional surfactant. Concentration optimizations yielded high activity for both the photosensitizer (240 turnovers, turnover frequency (TOF) = 200 h-1) and catalyst (400 turnovers, TOF = 230 h-1), with the system generating hydrogen even after 95 h. Mechanistic insights were provided by gas-phase Raman, electrochemical, and luminescence quenching analysis, suggesting oxidative quenching to be the principle reaction pathway.

16.
J Am Chem Soc ; 138(30): 9460-72, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27387149

RESUMEN

A series of fluorinated Ir(III)-terpyridine-phenylpyridine-X (X = anionic monodentate ligand) complexes were synthesized by selective C-F activation, whereby perfluorinated phenylpyridines were readily complexed. The combination of fluorinated phenylpyridine ligands with an electron-rich tri-tert-butyl terpyridine ligand generates a "push-pull" force on the electrons upon excitation, imparting significant enhancements to the stability, electrochemical, and photophysical properties of the complexes. Application of the complexes as photosensitizers for photocatalytic generation of hydrogen from water and as redox photocatalysts for decarboxylative fluorination of several carboxylic acids showcases the performance of the complexes in highly coordinating solvents, in some cases exceeding that of the leading photosensitizers. Changes in the photophysical properties and the nature of the excited states are observed as the compounds increase in fluorination as well as upon exchange of the ancillary chloride ligand to a cyanide. These changes in the excited states have been corroborated using density functional theory modeling.

17.
Chemistry ; 22(20): 6740-5, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-26919306

RESUMEN

A pyridylideneamide ligand with variable donor properties owing to a pronounced zwitterionic and a neutral diene-type resonance structure was used as a dynamic ligand at a Cp* iridium center to facilitate water oxidation catalysis, a reaction that requires the stabilization of a variety of different iridium oxidation states and that is key for developing an efficient solar fuel device. The ligand imparts high activity (nearly three-fold increase of turnover frequency compared to benchmark systems), and exceptionally high turnover numbers, which indicate a robust catalytic cycle and little catalyst degradation.

18.
Inorg Chem ; 55(2): 518-26, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26355840

RESUMEN

A family of tetradentate bis(pyridine-2-sulfonamide) (bpsa) compounds was synthesized as a ligand platform for designing resilient and electronically tunable catalysts capable of performing water oxidation catalysis and other processes in highly oxidizing environments. These wrap-around ligands were coordinated to Ir(III) octahedrally, forming an anionic complex with chloride ions bound to the two remaining coordination sites. NMR spectroscopy documented that the more rigid ligand frameworks-[Ir(bpsa-Cy)Cl2](-) and [Ir(bpsa-Ph)Cl2](-)-produced C1-symmetric complexes, while the complex with the more flexible ethylene linker in [Ir(bpsa-en)Cl2](-) displays C2 symmetry. Their electronic structure was explored with DFT calculations and cyclic voltammetry in nonaqueous environments, which unveiled highly reversible Ir(III)/Ir(IV) redox processes and more complex, irreversible reduction chemistry. Addition of water to the electrolyte revealed the ability of these complexes to catalyze the water oxidation reaction efficiently. Electrochemical quartz crystal microbalance studies confirmed that a molecular species is responsible for the observed electrocatalytic behavior and ruled out the formation of active IrOx. The electrochemical studies were complemented by work on chemically driven water oxidation, where the catalytic activity of the iridium complexes was studied upon exposure to ceric ammonium nitrate, a strong, one-electron oxidant. Variation of the catalyst concentrations helped to illuminate the kinetics of these water oxidation processes and highlighted the robustness of these systems. Stable performance for over 10 days with thousands of catalyst turnovers was observed with the C1-symmetric catalysts. Dynamic light scattering experiments ascertained that a molecular species is responsible for the catalytic activity and excluded the formation of IrOx particles.

19.
Chemistry ; 21(32): 11517-24, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26130318

RESUMEN

The synthesis and characterization of electron-poor thiophene 1,1-dioxides bearing cyanated phenyl groups are reported. The electron-accepting nature of these compounds was evaluated by cyclic voltammetry, and highly reversible and facile reductions were observed for several derivatives. Moreover, some of the reduced thiophene dioxides form colorful anions, which were investigated spectroelectrochemically. Photoluminescence spectra of the electron-deficient sulfones were measured in CH2 Cl2, and they emit in the blue-green region with significant variation in the quantum yield depending on the aryl substituents. By expanding the degree of substitution on the phenyl rings, quantum yields up to 34 % were obtained. X-ray diffraction data are reported for two of the thiophene 1,1-dioxides, and the electronic structure was probed for all synthesized derivatives through DFT calculations. The dioxides were also examined as electron relays in a photocatalytic water reduction reaction, and they showed potential to boost the efficiency.

20.
J Org Chem ; 80(23): 11686-98, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25671399

RESUMEN

The Diels-Alder reaction represents one of the most thoroughly studied and well-understood synthetic transformations for the assembly of six-membered rings. Although intramolecular dehydro-Diels-Alder (IMDDA) reactions have previously been employed for the preparation of naphthalene and dihydronaphthalene substrates, low yields and product mixtures have reduced the impact and scope of this reaction. Through the mechanistic studies described within, we have confirmed that the thermal IMDDA reaction of styrene-ynes produces a naphthalene product via loss of hydrogen gas from the initially formed cycloadduct, a tetraenyl intermediate. Alternatively, the dihydronaphthalene product is afforded from the same tetraenyl intermediate via a radical isomerization process. Moreover, we have identified conditions that can be used to achieve efficient, high-yielding, and selective IMDDA reactions of styrene-ynes to form either naphthalene or dihydronaphthalene products. The operational simplicity and retrosynthetic orthogonality of this method for the preparation of naphthalenes and dihydronaphthalenes makes this transformation appealing for the synthesis of medicinal and material targets. The mechanistic studies within may impact the development of other thermal transformations.


Asunto(s)
Naftalenos/química , Estireno/química , Reacción de Cicloadición , Estructura Molecular , Estereoisomerismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA