Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Immunol ; 208(10): 2363-2375, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35477686

RESUMEN

CO2, the primary gaseous product of respiration, is a major physiologic gas, the biology of which is poorly understood. Elevated CO2 is a feature of the microenvironment in multiple inflammatory diseases that suppresses immune cell activity. However, little is known about the CO2-sensing mechanisms and downstream pathways involved. We found that elevated CO2 correlates with reduced monocyte and macrophage migration in patients undergoing gastrointestinal surgery and that elevated CO2 reduces migration in vitro. Mechanistically, CO2 reduces autocrine inflammatory gene expression, thereby inhibiting macrophage activation in a manner dependent on decreased intracellular pH. Pharmacologic or genetic inhibition of carbonic anhydrases (CAs) uncouples a CO2-elicited intracellular pH response and attenuates CO2 sensitivity in immune cells. Conversely, CRISPR-driven upregulation of the isoenzyme CA2 confers CO2 sensitivity in nonimmune cells. Of interest, we found that patients with chronic lung diseases associated with elevated systemic CO2 (hypercapnia) display a greater risk of developing anastomotic leakage following gastrointestinal surgery, indicating impaired wound healing. Furthermore, low intraoperative pH levels in these patients correlate with reduced intestinal macrophage infiltration. In conclusion, CO2 is an immunomodulatory gas sensed by immune cells through a CA2-coupled change in intracellular pH.


Asunto(s)
Dióxido de Carbono , Anhidrasa Carbónica II , Dióxido de Carbono/metabolismo , Anhidrasa Carbónica II/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hipercapnia/enzimología , Hipercapnia/metabolismo , Isoenzimas
2.
Croat Med J ; 65(3): 268-287, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38868973

RESUMEN

This review evaluates the current landscape and future directions of regenerative medicine for knee cartilage repair, with a particular focus on tissue engineering strategies. In this context, scaffold-based approaches have emerged as promising solutions for cartilage regeneration. Synthetic scaffolds, while offering superior mechanical properties, often lack the biological cues necessary for effective tissue integration. Natural scaffolds, though biocompatible and biodegradable, frequently suffer from inadequate mechanical strength. Hybrid scaffolds, combining elements of both synthetic and natural materials, present a balanced approach, enhancing both mechanical support and biological functionality. Advances in decellularized extracellular matrix scaffolds have shown potential in promoting cell infiltration and integration with native tissues. Additionally, bioprinting technologies have enabled the creation of complex, bioactive scaffolds that closely mimic the zonal organization of native cartilage, providing an optimal environment for cell growth and differentiation. The review also explores the potential of gene therapy and gene editing techniques, including CRISPR-Cas9, to enhance cartilage repair by targeting specific genetic pathways involved in tissue regeneration. The integration of these advanced therapies with tissue engineering approaches holds promise for developing personalized and durable treatments for knee cartilage injuries and osteoarthritis. In conclusion, this review underscores the importance of continued multidisciplinary collaboration to advance these innovative therapies from bench to bedside and improve outcomes for patients with knee cartilage damage.


Asunto(s)
Cartílago Articular , Medicina Regenerativa , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Ingeniería de Tejidos/métodos , Medicina Regenerativa/tendencias , Medicina Regenerativa/métodos , Cartílago Articular/lesiones , Cartílago Articular/fisiología , Traumatismos de la Rodilla/terapia , Traumatismos de la Rodilla/cirugía , Terapia Genética/tendencias , Terapia Genética/métodos , Regeneración
3.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834862

RESUMEN

The degradation of cartilage, due to trauma, mechanical load or diseases, results in abundant loss of extracellular matrix (ECM) integrity and development of osteoarthritis (OA). Chondroitin sulfate (CS) is a member of the highly sulfated glycosaminoglycans (GAGs) and a primary component of cartilage tissue ECM. In this study, we aimed to investigate the effect of mechanical load on the chondrogenic differentiation of bone marrow mesenchymal stem cells (BM-MCSs) encapsulated into CS-tyramine-gelatin (CS-Tyr/Gel) hydrogel in order to evaluate the suitability of this composite for OA cartilage regeneration studies in vitro. The CS-Tyr/Gel/BM-MSCs composite showed excellent biointegration on cartilage explants. The applied mild mechanical load stimulated the chondrogenic differentiation of BM-MSCs in CS-Tyr/Gel hydrogel (immunohistochemical collagen II staining). However, the stronger mechanical load had a negative effect on the human OA cartilage explants evaluated by the higher release of ECM components, such as the cartilage oligomeric matrix protein (COMP) and GAGs, compared to the not-compressed explants. Finally, the application of the CS-Tyr/Gel/BM-MSCs composite on the top of the OA cartilage explants decreased the release of COMP and GAGs from the cartilage explants. Data suggest that the CS-Tyr/Gel/BM-MSCs composite can protect the OA cartilage explants from the damaging effects of external mechanical stimuli. Therefore, it can be used for investigation of OA cartilage regenerative potential and mechanisms under the mechanical load in vitro with further perspectives of therapeutic application in vivo.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Sulfatos de Condroitina/metabolismo , Hidrogeles/farmacología , Condrocitos/metabolismo , Cartílago/metabolismo , Glicosaminoglicanos/metabolismo , Osteoartritis/metabolismo , Diferenciación Celular , Cartílago Articular/metabolismo , Condrogénesis , Células Cultivadas
4.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769232

RESUMEN

Articular cartilage is vulnerable to mechanical overload and has limited ability to restore lesions, which leads to the development of chronic diseases such as osteoarthritis (OA). In this study, the chondrogenic responses of human bone marrow mesenchymal stem cells (BMMSCs) and OA cartilage-derived chondrocytes in 3D chondroitin sulfate-tyramine/gelatin (CS-Tyr)/Gel) hydrogels with or without experimental mechanical load have been investigated. Chondrocytes were smaller in size, had slower proliferation rate and higher level of intracellular calcium (iCa2+) compared to BMMSCs. Under 3D chondrogenic conditions in CS-Tyr/Gel with or without TGF-ß3, chondrocytes more intensively secreted cartilage oligomeric matrix protein (COMP) and expressed collagen type II (COL2A1) and aggrecan (ACAN) genes but were more susceptible to mechanical load compared to BMMSCs. ICa2+ was more stably controlled in CS-Tyr/Gel/BMMSCs than in CS-Tyr/Gel/chondrocytes ones, through the expression of L-type channel subunit CaV1.2 (CACNA1C) and Serca2 pump (ATP2A2) genes, and their balance was kept more stable. Due to the lower susceptibility to mechanical load, BMMSCs in CS-Tyr/Gel hydrogel may have an advantage over chondrocytes in application for cartilage regeneration purposes. The mechanical overload related cartilage damage in vivo and the vague regenerative processes of OA chondrocytes might be associated to the inefficient control of iCa2+ regulating channels.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Osteoartritis , Humanos , Condrocitos/metabolismo , Sulfatos de Condroitina/metabolismo , Hidrogeles/farmacología , Hidrogeles/metabolismo , Células Cultivadas , Diferenciación Celular , Cartílago Articular/patología , Osteoartritis/metabolismo , Células Madre Mesenquimatosas/metabolismo , Condrogénesis , Ingeniería de Tejidos
5.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047701

RESUMEN

Cartilage is an avascular tissue and sensitive to mechanical trauma and/or age-related degenerative processes leading to the development of osteoarthritis (OA). Therefore, it is important to investigate the mesenchymal cell-based chondrogenic regenerating mechanisms and possible their regulation. The aim of this study was to investigate the role of intracellular calcium (iCa2+) and its regulation through voltage-operated calcium channels (VOCC) on chondrogenic differentiation of mesenchymal stem/stromal cells derived from human bone marrow (BMMSCs) and menstrual blood (MenSCs) in comparison to OA chondrocytes. The level of iCa2+ was highest in chondrocytes, whereas iCa2+ store capacity was biggest in MenSCs and they proliferated better as compared to other cells. The level of CaV1.2 channels was also highest in OA chondrocytes than in other cells. CaV1.2 antagonist nifedipine slightly suppressed iCa2+, Cav1.2 and the proliferation of all cells and affected iCa2+ stores, particularly in BMMSCs. The expression of the CaV1.2 gene during 21 days of chondrogenic differentiation was highest in MenSCs, showing the weakest chondrogenic differentiation, which was stimulated by the nifedipine. The best chondrogenic differentiation potential showed BMMSCs (SOX9 and COL2A1 expression); however, purposeful iCa2+ and VOCC regulation by blockers can stimulate a chondrogenic response at least in MenSCs.


Asunto(s)
Bloqueadores de los Canales de Calcio , Condrocitos , Células Madre Mesenquimatosas , Nifedipino , Osteoartritis , Humanos , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrogénesis/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Nifedipino/farmacología , Osteoartritis/metabolismo , Canales de Calcio Tipo L , Bloqueadores de los Canales de Calcio/farmacología
6.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36293491

RESUMEN

The application of antibody-functionalized quantum dots (QDs) in different areas has been widely described in the literature. However, a standard routine method for obtaining information on the conjugation efficiency of QDs with antibodies in terms of the interaction of the functionalized QDs with a specific antigen is still lacking. Herein, surface plasmon resonance (SPR) spectroscopy is proposed for this purpose. Gold-coated SPR sensor disks were modified with a self-assembled monolayer of 11-mercaptoundecanoic acid, and carbodiimide cross-linker chemistry was used to covalently immobilize the CD44 biomarker on the premodified surface (Au/CD44). Meanwhile, QDs functionalized with amine-derivatized polyethylene glycol (PEG) (QDs-NH2) were chosen for conjugation with antibodies because of their low non-specific adsorption on the Au/CD44 surface. Prior to conjugation, the surface binding capacity (Bmax) and equilibrium dissociation constant (KD) of the specific antibodies against CD44 (anti-CD44) were found to be 263.32 ± 2.44 m° and 1.00 × 10-7 ± 2.29 × 10-9 M, respectively. QDs-NH2 and anti-CD44 were conjugated at their initial molar ratios of 1:3, 1:5, 1:10 and 1:12. SPR measurements showed that the conjugates (QDs-anti-CD44) prepared using 1:10 and 1:12 molar ratios interacted comparably with immobilized CD44 biomarkers. The equilibrium angles in the case of 10- and 12-fold concentrations of anti-CD44 were calculated to be 60.43 ± 4.51 and 61.36 ± 4.40 m°, respectively. This could be explained by the QDs-NH2 and anti-CD44 having a similar surface loading (about four molecules per QDs-NH2) and similar hydrodynamic diameters, which were 46.63 ± 3.86 and 42.42 ± 0.80 nm for the 1:10 and 1:12 ratios, respectively. An initial QDs-NH2: anti-CD44 molar ratio of 1:10 was chosen as being optimal. SPR spectroscopy proved to be the right choice for QDs-anti-CD44 conjugation optimization, and can be used for the evaluation of conjugation efficiency for other nanostructures with various bio-recognition molecules.


Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/química , Resonancia por Plasmón de Superficie/métodos , Oro/química , Anticuerpos , Análisis Espectral , Polietilenglicoles , Carbodiimidas , Aminas
7.
Biochem Biophys Res Commun ; 537: 29-35, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33383561

RESUMEN

Articular chondrocytes are exposed to dynamic osmotic environments during normal joint loading, and thus, require effective volume regulatory mechanisms. A regulatory volume decrease (RVD) is one of the mechanisms for protecting chondrocytes from swelling and damage. Swelling-activated Cl- currents (ICl,swell) are responsible for the RVD, but the molecular identity in chondrocytes is largely unknown. In this study, we reveal that in human OUMS-27 chondrocytes, ICl,swell can be elicited by hypoosmotic stimulation (180 mOsm) and be inhibited by classical Cl- channel blockers, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid, and be attenuated by siRNA knockdown of ClC-3. Our molecular analyses revealed that ClC-3A is expressed as a major splice variant in both human articular chondrocytes and OUMS-27 cells. The onset and early phase of RVD following hypoosmotic stress in OUMS-27 cells were affected by DIDS and ClC-3 knockdown. Hypoosmotic stimulation caused Ca2+ influx and subsequent release of prostaglandin E2 (PGE2) in OUMS-27 cells, and both of these responses were reduced by DIDS and ClC-3 knockdown. These results strongly suggest that ClC-3 is responsible for ICl,swell and RVD under the hypoosmotic environments. It is likely that ClC-3 is associated with the pathogenesis of cartilage degenerative diseases including osteoarthritis via PGE2 release.


Asunto(s)
Canales de Cloruro/metabolismo , Condrocitos/metabolismo , Dinoprostona/farmacología , Cartílago Articular/citología , Línea Celular , Tamaño de la Célula/efectos de los fármacos , Condrocitos/citología , Condrocitos/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Soluciones
8.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34575847

RESUMEN

Osteoarthritis (OA) is a long-term chronic joint disease characterized by the deterioration of bones and cartilage, which results in rubbing of bones which causes joint stiffness, pain, and restriction of movement. Tissue engineering strategies for repairing damaged and diseased cartilage tissue have been widely studied with various types of stem cells, chondrocytes, and extracellular matrices being on the lead of new discoveries. The application of natural or synthetic compound-based scaffolds for the improvement of chondrogenic differentiation efficiency and cartilage tissue engineering is of great interest in regenerative medicine. However, the properties of such constructs under conditions of mechanical load, which is one of the most important factors for the successful cartilage regeneration and functioning in vivo is poorly understood. In this review, we have primarily focused on natural compounds, particularly extracellular matrix macromolecule-based scaffolds and their combinations for the chondrogenic differentiation of stem cells and chondrocytes. We also discuss different mechanical forces and compression models that are used for In Vitro studies to improve chondrogenic differentiation. Summary of provided mechanical stimulation models In Vitro reviews the current state of the cartilage tissue regeneration technologies and to the potential for more efficient application of cell- and scaffold-based technologies for osteoarthritis or other cartilage disorders.


Asunto(s)
Diferenciación Celular , Condrocitos/citología , Condrocitos/metabolismo , Condrogénesis , Mecanotransducción Celular , Animales , Biomimética , Cartílago , Colágeno/metabolismo , Susceptibilidad a Enfermedades , Matriz Extracelular , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/etiología , Osteoartritis/metabolismo , Osteoartritis/patología , Ingeniería de Tejidos , Andamios del Tejido
9.
Curr Rheumatol Rep ; 22(4): 12, 2020 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-32248371

RESUMEN

PURPOSE OF REVIEW: In this review article, we discuss the potential for employing nanotechnological strategies for the diagnosis, monitoring, and clinical management of osteoarthritis (OA) and explore how nanotechnology is being integrated rapidly into regenerative medicine for OA and related osteoarticular disorders. RECENT FINDINGS: We review recent advances in this rapidly emerging field and discuss future opportunities for innovations in enhanced diagnosis, prognosis, and treatment of OA and other osteoarticular disorders, the smart delivery of drugs and biological agents, and the development of biomimetic regenerative platforms to support cell and gene therapies for arresting OA and promoting cartilage and bone repair. Nanotubes, magnetic nanoparticles, and other nanotechnology-based drug and gene delivery systems may be used for targeting molecular pathways and pathogenic mechanisms involved in OA development. Nanocomposites are also being explored as potential tools for promoting cartilage repair. Nanotechnology platforms may be combined with cell, gene, and biological therapies for the development of a new generation of future OA therapeutics. Graphical Abstract.


Asunto(s)
Nanotecnología/tendencias , Osteoartritis/diagnóstico , Osteoartritis/terapia , Medicina Regenerativa/tendencias , Enfermedades de los Cartílagos/terapia , Cartílago Articular/efectos de los fármacos , Cartílago Articular/fisiopatología , Humanos , Artropatías/diagnóstico , Artropatías/terapia , Osteoartritis/fisiopatología
10.
Curr Opin Rheumatol ; 31(1): 80-89, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30461544

RESUMEN

PURPOSE OF REVIEW: This review focuses on the molecular taxonomy of osteoarthritis from the perspective of molecular biomarkers. We discuss how wet biochemical markers may be used to understand disease pathogenesis and progression and define molecular endotypes of osteoarthritis and how these correspond to clinical phenotypes. RECENT FINDINGS: Emerging evidence suggests that osteoarthritis is a heterogeneous and multifaceted disease with multiple causes, molecular endotypes and corresponding clinical phenotypes. Biomarkers may be employed as tools for patient stratification in clinical trials, enhanced disease management in the primary care centres of the future and for directing more rational and targeted osteoarthritis drug development. Proximal molecular biomarkers (e.g synovial fluid) are more likely to distinguish between molecular endotypes because there is less interference from systemic sources of biomarker noise, including comorbidities. SUMMARY: In this review, we have focused on the molecular biomarkers of four distinct osteoarthritis subtypes including inflammatory, subchondral bone remodelling, metabolic syndrome and senescent age-related endotypes, which have corresponding phenotypes. Progress in the field of osteoarthritis endotype and phenotype research requires a better understanding of molecular biomarkers that may be used in conjunction with imaging, pain and functional assessments for the design of more effective, stratified and individualized osteoarthritis treatments.


Asunto(s)
Osteoartritis/diagnóstico , Fenotipo , Biomarcadores/metabolismo , Remodelación Ósea , Manejo de la Enfermedad , Progresión de la Enfermedad , Humanos , Osteoartritis/metabolismo
11.
Int J Mol Sci ; 19(10)2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275359

RESUMEN

Human mesenchymal stem cells (hMSC) are becoming increasingly popular in tissue engineering. They are the most frequently used stem cell source for clinical applications due to their high potential to differentiate into several lineages. Cartilage is known for its low capacity for self-maintenance and currently there are no efficient methods to improve cartilage repair. Chondrogenic differentiation of hMSC isolated from different tissues is widely employed due to a high clinical demand for the improvement of cartilage regeneration. Calcium channels that are regulated by physical stimuli seem to play a pivotal role in chondrogenic differentiation of MSCs. These channels increase intracellular calcium concentration, which leads to the initiation of the relevant cellular processes that are required for differentiation. This review will focus on the impact of different physical stimuli, including electrical, electromagnetic/magnetic and mechanical on various calcium channels and calcium signaling mechanisms during chondrogenic differentiation of hMSC.


Asunto(s)
Canales de Calcio/metabolismo , Diferenciación Celular , Condrogénesis , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Señalización del Calcio , Humanos , Estimulación Física
12.
Cytometry A ; 87(11): 1001-11, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26355501

RESUMEN

The aim of present study was to assess the expression of surface markers and the accumulation of protoporphyrin IX in synovial mesenchymal stem cells (SMSCs). SMSC from patients with rheumatoid arthritis (RA, n = 5) and osteoarthritis (OA, n = 5-6) were characterized and their PpIX accumulation rates were evaluated by flow cytometry. The expression of the 21 out of 24 tested surface markers, related to stem-like features and aggressiveness of cells showed no statistically significant differences between RA and OA groups. However, the cells from RA group had the significantly lower levels of expression for the integrin-associated protein CD47 and the grow factor receptor CD271 (P = 0.018), while the higher levels of cell membrane zinc-dependent metalloproteinase CD10 (P = 0.006), as compared to the cells from OA group. Comparison of the mean intensities of PpIX fluorescence revealed no statistically significant differences between the RA and OA groups, as well as no relation to proliferation rates or cell size, although some conspicuous distinction in PpIX accumulation was observed in certain specimens within these groups, suggesting possibilities of this method application for characterization of individual SMSC populations. CD10, CD47, and CD271 were differently expressed in RA and OA SMSC, while had no direct association with the PpIX fluorescence intensity.


Asunto(s)
Artritis Reumatoide/metabolismo , Células Madre Mesenquimatosas/citología , Osteoartritis/metabolismo , Protoporfirinas/metabolismo , Antígenos CD/inmunología , Artritis Reumatoide/inmunología , Biomarcadores/análisis , Diferenciación Celular/fisiología , Citometría de Flujo/métodos , Humanos , Osteoartritis/inmunología
13.
Mol Cell Biochem ; 410(1-2): 111-20, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26307369

RESUMEN

Adult stem cells have more restricted differentiation potential than embryonic stem cells (ESCs), but upon appropriate stimulation can differentiate into cells of different germ layers. Epigenetic factors, including DNA modifications, take a significant part in regulation of pluripotency and differentiation of ESCs. Less is known about the epigenetic regulation of these processes in adult stem cells. Gene expression profile and location of DNA modifications in adipose-derived stem cells (ADSCs) and their osteogenically differentiated lineages were analyzed using Agilent microarrays. Methylation-specific PCR and restriction-based quantitative PCR were applied for 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) detection in selected loci. The level of DNA modifications in the POU5F1 locus was quantified with deep sequencing. Expression levels of selected genes were assayed by real-time PCR. ADSCs differentiation into osteogenic lineages involved marked changes in both 5mC and 5hmC profiles, but 5hmC changes were more abundant. 5mC losses and 5hmC gains were the main events observed during ADSCs differentiation, and were accompanied by increased expression of TET1 (P = 0.009). In ADSCs, POU5F1 was better expressed than NANOG or SOX2 (P ≤ 0.001). Both 5mC and 5hmC marks were present in the POU5F1 locus, but only hydroxymethylation of specific cytosine showed significant effect on the gene expression. In summary, the data of our study suggest significant involvement of changes in 5hmC profile during the differentiation of human adult stem cells.


Asunto(s)
Tejido Adiposo/citología , Células Madre Adultas/fisiología , Diferenciación Celular/genética , Epigénesis Genética , Osteoblastos/fisiología , Osteogénesis/genética , Células Madre Pluripotentes/fisiología , 5-Metilcitosina/metabolismo , Células Madre Adultas/metabolismo , Línea Celular , Linaje de la Célula , Citosina/análogos & derivados , Citosina/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Osteoblastos/metabolismo , Fenotipo , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
14.
Bioengineering (Basel) ; 11(4)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38671727

RESUMEN

The investigation examines the transference of stiffness from intervertebral discs (IVDs) to the lumbar body of the L1 vertebra and the interactions among adjacent tissues. A computational model of the vertebra was developed, considering parameters such as cortical bone thickness, trabecular bone elasticity, and the nonlinear response of the nucleus pulposus to external loading. A nonlinear dynamic analysis was performed, revealing certain trends: a heightened stiffness of the annulus fibrosus correlates with a significant reduction in the vertebral body's ability to withstand external loading. At a supplied displacement of 6 mm, the vertebra with a degenerative disc reached its yielding point, whereas the vertebrae with a healthy annulus fibrosus exhibited a strength capacity exceeding 20%. The obtained findings and proposed methodology are potentially useful for biomedical engineers and clinical specialists in evaluating the condition of the annulus fibrosus and predicting its influence on the bone components of the spinal system.

15.
Bioengineering (Basel) ; 10(4)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37106641

RESUMEN

Electrical stimulation (ES) has been frequently used in different biomedical applications both in vitro and in vivo. Numerous studies have demonstrated positive effects of ES on cellular functions, including metabolism, proliferation, and differentiation. The application of ES to cartilage tissue for increasing extracellular matrix formation is of interest, as cartilage is not able to restore its lesions owing to its avascular nature and lack of cells. Various ES approaches have been used to stimulate chondrogenic differentiation in chondrocytes and stem cells; however, there is a huge gap in systematizing ES protocols used for chondrogenic differentiation of cells. This review focuses on the application of ES for chondrocyte and mesenchymal stem cell chondrogenesis for cartilage tissue regeneration. The effects of different types of ES on cellular functions and chondrogenic differentiation are reviewed, systematically providing ES protocols and their advantageous effects. Moreover, cartilage 3D modeling using cells in scaffolds/hydrogels under ES are observed, and recommendations on reporting about the use of ES in different studies are provided to ensure adequate consolidation of knowledge in the area of ES. This review brings novel insights into the further application of ES in in vitro studies, which are promising for further cartilage repair techniques.

16.
Biosens Bioelectron ; 234: 115370, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37163879

RESUMEN

This paper reports the development of a novel surface plasmon resonance (SPR) immunosensor for ultra-sensitive quantitative determination of human articular cartilage oligomeric matrix protein (COMP), a major component of the extracellular matrix and an exploratory biomarker. Capture antibodies against human COMP (anti-COMP16F12) were covalently immobilized on an 11-mercaptoundecanoic acid (11-MUA) self-assembled monolayer (SAM)-coated SPR sensor disk and a dual sandwich-type signal amplification strategy using biotinylated detection antibodies against COMP (anti-COMP17C10-biot) and streptavidin-conjugated quantum dots (SAv‒QDs) were used for the development of an immunosensor. The binding of high-mass SAv‒QDs via biotin-streptavidin interaction to the surface of the immunosensor resulted in a drastic increase in the sensitivity. The developed immunosensor was able to detect concentrations of COMP in a range from 2.80 to 680.54 fM with a limit of detection (LOD) and a limit of quantification (LOQ) of 0.15 and 0.50 fM, respectively. The immunosensor exhibited good repeatability (relative standard deviation (RSD) 8.05%) and reproducibility (RSD 9.88%) as well as excellent operational stability (2.14 % decrease in SPR signal after 13 days). In addition, the analysis of secretomes of human knee articular cartilage explants from patients with osteoarthritis revealed that the immunosensor has good accuracy (analytical error less than 5 %). These results indicate that the immunosensor developed may be suitable for quantitative determination of COMP derived from articular cartilage and other synovial joint tissues in clinical studies.


Asunto(s)
Técnicas Biosensibles , Resonancia por Plasmón de Superficie , Humanos , Resonancia por Plasmón de Superficie/métodos , Proteína de la Matriz Oligomérica del Cartílago , Técnicas Biosensibles/métodos , Estreptavidina , Reproducibilidad de los Resultados , Inmunoensayo/métodos , Biomarcadores
17.
Bioengineering (Basel) ; 10(9)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37760103

RESUMEN

Articular cartilage is an avascular tissue with a limited capacity for self-regeneration, leading the tissue to osteoarthritis (OA). Mesenchymal stem cells (MSCs) are promising for cartilage tissue engineering, as they are capable of differentiating into chondrocyte-like cells and secreting a number of active molecules that are important for cartilage extracellular matrix (ECM) synthesis. The aim of this study was to evaluate the potential of easily accessible menstrual blood-derived MSC (MenSC) paracrine factors in stimulating bone marrow MSC (BMMSCs) chondrogenic differentiation and to investigate their role in protecting cartilage from degradation in vitro. MenSCs and BMMSCs chondrogenic differentiation was induced using four different growth factors: TGF-ß3, activin A, BMP-2, and IGF-1. The chondrogenic differentiation of BMMSCs was stimulated in co-cultures with MenSCs and cartilage explants co-cultured with MenSCs for 21 days. The chondrogenic capacity of BMMSCs was analyzed by the secretion of four growth factors and cartilage oligomeric matrix protein, as well as the release and synthesis of cartilage ECM proteins, and chondrogenic gene expression in cartilage explants. Our results suggest that MenSCs stimulate chondrogenic response in BMMSCs by secreting activin A and TGF-ß3 and may have protective effects on cartilage tissue ECM by decreasing the release of GAGs, most likely through the modulation of activin A related molecular pathway. In conclusion, paracrine factors secreted by MenSCs may turn out to be a promising therapeutical approach for cartilage tissue protection and repair.

18.
Biomedicines ; 11(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37760884

RESUMEN

Osteoarthritis (OA) ranks as the prevailing type of arthritis on a global scale, for which no effective treatments are currently available. Arterial hypertension is a common comorbidity in OA patients, and antihypertensive drugs, such as nifedipine (NIF), may affect the course of OA progression. The aim of this preclinical study was to determine the effect of nifedipine on healthy and OA cartilage, depending on its route of administration. In this study, we used the destabilization of medial meniscus to develop a mouse model of OA. Nifedipine was applied per os or intraarticularly (i.a.) for 8 weeks to both mice with OA and healthy animals. Serum biomarker concentrations were evaluated using the Luminex platform and alterations in the knee cartilage were graded according to OARSI histological scores and investigated immunohistochemically. Nifedipine treatment per os and i.a. exerted protective effects, as assessed by the OARSI histological scores. However, long-term nifedipine i.a. injections induced the deterioration of healthy cartilage. Lubricin, cartilage intermediate layer matrix protein (CILP), collagen type VI (COLVI), CILP, and Ki67 were upregulated by the nifedipine treatment. Serum biomarkers MMP-3, thrombospondin-4, and leptin were upregulated in the healthy groups treated with nifedipine, while only the levels of MMP-3 were significantly higher in the OA group treated with nifedipine per os compared to the untreated group. In conclusion, this study highlights the differential effects of nifedipine on cartilage integrity, depending on the route of administration and cartilage condition.

19.
Polymers (Basel) ; 15(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37299369

RESUMEN

Bone marrow mesenchymal stem cells (BMMSCs) possess a strong ability to differentiate into the chondrogenic lineage, which is important for cartilage regeneration. External stimuli, such as electrical stimulation (ES), are frequently studied for chondrogenic differentiation of BMMSCs; however, the application of conductive polymers such as polypyrrole (Ppy), has never been used for stimulating BMMSCs chondrogenesis in vitro before. Thus, the aim of this study was to evaluate the chondrogenic potential of human BMMSCs after stimulation with Ppy nanoparticles (Ppy NPs) and compare them to cartilage-derived chondrocytes. In this study, we tested Ppy NPs without and with 13 nm gold NPs (Ppy/Au) for BMMSCs and chondrocyte proliferation, viability, and chondrogenic differentiation for 21 days, without the use of ES. The results demonstrated significantly higher amounts of cartilage oligomeric matrix protein (COMP) in BMMSCs stimulated with Ppy and Ppy/Au NPs, as compared to the control. The expression of chondrogenic genes (SOX9, ACAN, COL2A1) in BMMSCs and chondrocytes were upregulated by Ppy and Ppy/Au NPs, as compared to controls. Histological staining with safranin-O indicated higher extracellular matrix production in Ppy and Ppy/Au NPs stimulated samples, as compared to controls. In conclusion, Ppy and Ppy/Au NPs stimulate BMMSC chondrogenic differentiation; however, BMMSCs were more responsive to Ppy, while chondrocytes possessed a stronger chondrogenic response to Ppy/Au NPs.

20.
Bioengineering (Basel) ; 10(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36978703

RESUMEN

The present study aims to explore the stressed state of cartilage using various meniscal tear models. To perform this research, the anatomical model of the knee joint was developed and the nonlinear mechanical properties of the cartilage and meniscus were verified. The stress-strain curve of the meniscus was obtained by testing fresh tissue specimens of the human meniscus using a compression machine. The results showed that the more deteriorated meniscus had greater stiffness, but its integrity had the greatest impact on the growth of cartilage stresses. To confirm this, cases of radial, longitudinal, and complex tears were examined. The methodology and results of the study can assist in medical diagnostics for meniscus treatment and replacement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA