Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Waste Manag ; 28(4): 734-40, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18032016

RESUMEN

This paper serves two purposes: it provides a summarized scientific history of carbon sequestration in relation to the soil-plant system and gives a commentary on organic wastes and SOC sequestration. The concept of soil organic carbon (SOC) sequestration has its roots in: (i) the experimental work of Lundegårdh, particularly his in situ measurements of CO2 fluxes at the soil-plant interface (1924, 1927, 1930); (ii) the first estimates of SOC stocks at the global level made by Waksman [Waksman, S.A., 1938. Humus. Origin, Chemical Composition and Importance in Nature, second ed. revised. Williams and Wilkins, Baltimore, p. 526] and Rubey [Rubey, W.W., 1951. Geologic history of sea water. Bulletin of the Geological Society of America 62, 1111-1148]; (iii) the need for models dealing with soil organic matter (SOM) or SOC dynamics beginning with a conceptual SOM model by De Saussure (1780-1796) followed by the mathematical models of Jenny [Jenny, H., 1941. Factors of Soil Formation: a System of Quantitative Pedology. Dover Publications, New York, p. 288], Hénin and Dupuis [Hénin, S., Dupuis, M., 1945. Essai de bilan de la matière organique. Annales d'Agronomie 15, 17-29] and more recently the RothC [Jenkinson, D.S., Rayner, J.H., 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science 123 (5), 298-305] and Century [Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S., 1987. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Science Society of America Journal 51 (5), 1173-1179] models. The establishment of a soil C sequestration balance is not straightforward and depends greatly on the origin and the composition of organic matter that is to be returned to the system. Wastes, which are important sources of organic carbon for soils, are taken as an example. For these organic materials the following factors have to be considered: the presence or absence of fossil C, the potential of direct and indirect emissions of non-CO2 greenhouse gases (CH4 and N2O) following application and the agro-system which is being used as a comparative reference.


Asunto(s)
Carbono/análisis , Suelo/análisis , Contaminantes Atmosféricos/análisis , Carbono/historia , Dióxido de Carbono/análisis , Historia del Siglo XX , Historia del Siglo XXI , Metano/análisis , Óxido Nitroso/análisis , Residuos
2.
Folia Microbiol (Praha) ; 63(3): 381-389, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29260385

RESUMEN

Tropical rainforest soils harbor a considerable diversity of soil fauna that contributes to emissions of N2O. Despite their ecological dominance, there is limited information available about the contribution of epigeal ant mounds to N2O emissions in these tropical soils. This study aimed to determine whether ant mounds contribute to local soil N emissions in the tropical humid rainforest. N2O emission was determined in vitro from individual live ants, ant-processed mound soils, and surrounding reference soils for two trophically distinct and abundant ant species: the leaf-cutting Atta mexicana and omnivorous Solenopsis geminata. The abundance of total bacteria, nitrifiers (AOA and AOB), and denitrifiers (nirK, nirS, and nosZ) was estimated in these soils using quantitative PCR, and their respective mineral N contents determined. There was negligible N2O emission detected from live ant individuals. However, the mound soils of both species emitted significantly greater (3-fold) amount of N2O than their respective surrounding reference soils. This emission increased significantly up to 6-fold in the presence of acetylene, indicating that, in addition to N2O, dinitrogen (N2) is also produced from these mound soils at an equivalent rate (N2O/N2 = 0.57). Functional gene abundance (nitrifiers and denitrifiers) and mineral N pools (ammonium and nitrate) were significantly greater in mound soils than in their respective reference soils. Furthermore, in the light of the measured parameters and their correlation trends, nitrification and denitrification appeared to represent the major N2O-producing microbial processes in ant mound soils. The ant mounds were estimated to contribute from 0.1 to 3.7% of the total N2O emissions of tropical rainforest soils.


Asunto(s)
Hormigas/microbiología , Óxido Nitroso/análisis , Microbiología del Suelo , Suelo/química , Animales , Hormigas/metabolismo , Bacterias/genética , Bacterias/metabolismo , Desnitrificación/genética , Genes Bacterianos , Nitrificación/genética , Óxido Nitroso/metabolismo , Bosque Lluvioso
3.
J Anim Sci ; 91(4): 1811-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23345562

RESUMEN

No information regarding the management of manure from beef cattle feedlots is available for Brazil. To fill this knowledge gap, a survey of 73 feedlots was conducted in 7 Brazilian states. In this survey, questions were asked regarding animal characteristics, their diets, and manure handling management from generation to disposal. These feedlots finished 831,450 animals in 2010. The predominant breed fed was Nellore, with average feeding periods of 60 to 135 d. Corn was the primary source of grain used in the feedlot diets (76% of surveyed animals) with concentrate inclusion levels ranging from 81 to 90% (38% of surveyed animals). The most representative manure management practice was the removal of manure from pens only at the end of the feeding period. Subsequently, the manure was stored in mounds before being applied to crop and pasture lands. Runoff, mainly from rainwater, was collected in retention ponds and used for agriculture. However, the quantity of runoff was not known. Manure was composted for only 20% of the animals in the survey and was treated in anaerobic digesters for only 1% of the animals. Manure from 59% of the cattle surveyed was used as fertilizer, providing a cost savings over the use of synthetic fertilizers. Overall, chemical analysis of the manure before application to fields was conducted for the manure of 56% of the surveyed animals, but the exact quantity applied (per hectare) was unknown for 48%. Feedlots representing 48% of the surveyed animals noted similar or greater crop and pasture yields when using manure, rather than synthetic fertilizers. In addition, 32% mentioned an increase in soil organic matter. Feedlots representing 88% of the surveyed cattle indicated that information concerning management practices that improve manure use efficiency is lacking. Feedlots representing 93% of the animals in the survey reported having basic information regarding the generation of energy and fertilizer with anaerobic digesters. However, only 1 feedlot implemented this technology. In conclusion, the manure management evaluated in this study represents an important indirect economic benefit that was represented by decreased use of synthetic fertilizers in crops. However, little attention was given to the specific treatments and environmental impacts of handling manure. This survey provides information that should assist in the development of better research practices and broader application of future models.


Asunto(s)
Crianza de Animales Domésticos/métodos , Bovinos/metabolismo , Estiércol , Agricultura/métodos , Animales , Brasil , Recolección de Datos , Dieta/veterinaria , Fertilizantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA