Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nucl Cardiol ; 28(6): 2506-2513, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-32026330

RESUMEN

BACKGROUND: Imaging Somatostatin Subtype Receptor 2 (SST2) expressing macrophages by [DOTA,Tyr3]-octreotate (DOTATATE) has proven successful for plaque detection. DOTA-JR11 is a SST2 targeting ligand with a five times higher tumor uptake than DOTATATE, and holds promise to improve plaque imaging. The aim of this study was to evaluate the potential of DOTA-JR11 for plaque detection. METHODS AND RESULTS: Atherosclerotic ApoE-/- mice (n = 22) fed an atherogenic diet were imaged by SPECT/CT two hours post injection of [111In]In-DOTA-JR11 (~ 200 pmol, ~ 50 MBq). In vivo plaque uptake of [111In]In-DOTA-JR11 was visible in all mice, with a target-to-background-ratio (TBR) of 2.23 ± 0.35. Post-mortem scans after thymectomy and ex vivo scans of the arteries after excision of the arteries confirmed plaque uptake of the radioligand with TBRs of 2.46 ± 0.52 and 3.43 ± 1.45 respectively. Oil red O lipid-staining and ex vivo autoradiography of excised arteries showed [111In]In-DOTA-JR11 uptake at plaque locations. Histological processing showed CD68 (macrophages) and SST2 expressing cells in plaques. SPECT/CT, in vitro autoradiography and immunohistochemistry performed on slices of a human carotid endarterectomy sample showed [111In]In-DOTA-JR11 uptake at plaque locations containing CD68 and SST2 expressing cells. CONCLUSIONS: The results of this study indicate DOTA-JR11 as a promising ligand for visualization of atherosclerotic plaque inflammation.


Asunto(s)
Compuestos Heterocíclicos con 1 Anillo , Radioisótopos de Indio , Inflamación/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Receptores de Somatostatina , Animales , Ratones
2.
Eur J Nucl Med Mol Imaging ; 47(12): 2856-2865, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32291511

RESUMEN

PURPOSE: Atherosclerotic plaque development and progression signifies a complex inflammatory disease mediated by a multitude of proinflammatory leukocyte subsets. Using single photon emission computed tomography (SPECT) coupled with computed tomography (CT), this study tested a new dual-isotope acquisition protocol to assess each radiotracer's capability to identify plaque phenotype and inflammation levels pertaining to leukocytes expressing leukocyte function-associated antigen-1 (LFA-1) and the leukocyte subset of proinflammatory macrophages expressing somatostatin receptor subtype-2 (SST2). Individual radiotracer uptake was quantified and the presence of corresponding immunohistological cell markers was assessed. METHODS: Human symptomatic carotid plaque segments were obtained from endarterectomy. Segments were incubated in dual-isotope radiotracers [111In]In-DOTA-butylamino-NorBIRT ([111In]In-Danbirt) and [99mTc]Tc-[N0-14,Asp0,Tyr3]-octreotate ([99mTc]Tc-Demotate 2) before scanning with SPECT/CT. Plaque phenotype was classified as pathological intimal thickening, fibrous cap atheroma or fibrocalcific using histology sections based on distinct morphological characteristics. Plaque segments were subsequently immuno-stained with LFA-1 and SST2 and quantified in terms of positive area fraction and compared against the corresponding SPECT images. RESULTS: Focal uptake of co-localising dual-radiotracers identified the heterogeneous distribution of inflamed regions in the plaques which co-localised with positive immuno-stained regions of LFA-1 and SST2. [111In]In-Danbirt and [99mTc]Tc-Demotate 2 uptake demonstrated a significant positive correlation (r = 0.651; p = 0.001). Fibrous cap atheroma plaque phenotype correlated with the highest [111In]In-Danbirt and [99mTc]Tc-Demotate 2 uptake compared with fibrocalcific plaques and pathological intimal thickening phenotypes, in line with the immunohistological analyses. CONCLUSION: A dual-isotope acquisition protocol permits the imaging of multiple leukocyte subsets and the pro-inflammatory macrophages simultaneously in atherosclerotic plaque tissue. [111In]In-Danbirt may have added value for assessing the total inflammation levels in atherosclerotic plaques in addition to classifying plaque phenotype.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Aterosclerosis/diagnóstico por imagen , Humanos , Isótopos , Placa Aterosclerótica/diagnóstico por imagen , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada de Emisión de Fotón Único
3.
Recent Results Cancer Res ; 216: 31-110, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32594384

RESUMEN

Imaging in Oncology is rapidly moving from the detection and size measurement of a lesion to the quantitative assessment of metabolic processes and cellular and molecular interactions. Increasing insights into cancer as a complex disease with involvement of the tumor stroma in tumor pathobiological processes have made it clear that for successful control of cancer, treatment strategies should not only be directed at the cancer cells but should also take aspects of the tumor microenvironment into account. This requires an understanding of the complex molecular and cellular interactions in cancer tissue. Recent developments in imaging technology have increased the possibility to image various pathobiological processes in cancer development and response to treatment. For computed tomography (CT) and magnetic resonance imaging (MRI) various improvements in hardware, software, and imaging probes have lifted these modalities from classical anatomical imaging techniques to techniques suitable to image and quantify various physiological processes and molecular and cellular interactions. Next to a more general overview of possible imaging targets in oncology, this chapter provides an overview of the various developments in CT and MRI technology and some specific applications.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Humanos , Oncología Médica
4.
Nanomedicine ; 13(7): 2179-2188, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28535990

RESUMEN

Pluronics P94 are block-copolymer showing prolonged circulation time and tumor-cell internalization in vitro, suggesting a potential for tumor accumulation and as a drug carrier. Here we report the results of the radiolabeled-P94 unimers (P94-111In-DTPA) on tumor uptake/retention and biodistribution after intravenous and intratumoral injection to tumor-bearing mice. Intravenous administration results in a high radioactive signal in the liver; while in tumor and other healthy tissues only low levels of radioactivity could be measured. In contrast, the intratumoral injection of P94 resulted in elevated levels of radioactivity in the tumor and low levels in other organs, including the liver. Independently from the injection route, the tumor tissue presented long retention of radioactivity. The minimal involvement of off-target tissues of P94, together with the excellent tracer retention over-time in the tumor designates Pluronic P94 copolymer as a highly promising carrier for anti-tumor drugs.


Asunto(s)
Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/farmacocinética , Poloxámero/administración & dosificación , Poloxámero/farmacocinética , Animales , Línea Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Humanos , Inyecciones Intralesiones , Inyecciones Intravenosas , Masculino , Ratones Endogámicos BALB C , Neoplasias/metabolismo , Poloxámero/química , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
5.
Eur J Nucl Med Mol Imaging ; 42(4): 579-96, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25673052

RESUMEN

In view of the trend towards personalized treatment strategies for (cancer) patients, there is an increasing need to noninvasively determine individual patient characteristics. Such information enables physicians to administer to patients accurate therapy with appropriate timing. For the noninvasive visualization of disease-related features, imaging biomarkers are expected to play a crucial role. Next to the chemical development of imaging probes, this requires preclinical studies in animal tumour models. These studies provide proof-of-concept of imaging biomarkers and help determine the pharmacokinetics and target specificity of relevant imaging probes, features that provide the fundamentals for translation to the clinic. In this review we describe biological processes derived from the "hallmarks of cancer" that may serve as imaging biomarkers for diagnostic, prognostic and treatment response monitoring that are currently being studied in the preclinical setting. A number of these biomarkers are also being used for the initial preclinical assessment of new intervention strategies. Uniquely, noninvasive imaging approaches allow longitudinal assessment of changes in biological processes, providing information on the safety, pharmacokinetic profiles and target specificity of new drugs, and on the antitumour effectiveness of therapeutic interventions. Preclinical biomarker imaging can help guide translation to optimize clinical biomarker imaging and personalize (combination) therapies.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Diagnóstico por Imagen , Neoplasias/diagnóstico , Animales , Neoplasias/diagnóstico por imagen , Radiografía , Cintigrafía , Radiofármacos/farmacocinética
6.
Eur J Nucl Med Mol Imaging ; 41 Suppl 1: S36-49, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24895751

RESUMEN

Preclinical imaging with SPECT combined with CT or MRI is used more and more frequently and has proven to be very useful in translational research. In this article, an overview of current preclinical research applications and trends of SPECT combined with CT or MRI, mainly in tumour imaging and neuroscience imaging, is given and the advantages and disadvantages of the different approaches are described. Today SPECT and CT systems are often integrated into a single device (commonly called a SPECT/CT system), whereas at present combined SPECT and MRI is almost always carried out with separate systems and fiducial markers to combine the separately acquired images. While preclinical SPECT/CT is most widely applied in oncology research, SPECT combined with MRI (SPECT/MRI when integrated in one system) offers the potential for both neuroscience applications and oncological applications. Today CT and MRI are still mainly used to localize radiotracer binding and to improve SPECT quantification, although both CT and MRI have additional potential. Future technology developments may include fast sequential or simultaneous acquisition of (dynamic) multimodality data, spectroscopy, fMRI along with high-resolution anatomic MRI, advanced CT procedures, and combinations of more than two modalities such as combinations of SPECT, PET, MRI and CT all together. This will all strongly depend on new technologies. With further advances in biology and chemistry for imaging molecular targets and (patho)physiological processes in vivo, the introduction of new imaging procedures and promising new radiopharmaceuticals in clinical practice may be accelerated.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Enfermedades Neurodegenerativas/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Humanos , Imagen por Resonancia Magnética/instrumentación , Imagen Multimodal/instrumentación , Imagen Multimodal/métodos , Neoplasias/diagnóstico , Enfermedades Neurodegenerativas/diagnóstico , Radiofármacos/farmacocinética , Tomografía Computarizada de Emisión de Fotón Único/instrumentación , Tomografía Computarizada por Rayos X/instrumentación
7.
J Magn Reson Imaging ; 39(4): 901-10, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24123470

RESUMEN

PURPOSE: To evaluate the reproducibility and sensitivity of the modified CINE inversion recovery (mCINE-IR) acquisition on rats for measuring the myocardial T1 at 7 Tesla. MATERIALS AND METHODS: The recently published mCINE-IR acquisition on humans was applied on rats for the first time, enabling the possibility of translational studies with an identical sequence. Simulations were used to study signal evolution and heart rate dependency. Gadolinium phantoms, a heart specimen and a healthy rat were used to study reproducibility. Two cryo-infarcted rats were scanned to measure late gadolinium enhancement (LGE). RESULTS: In the phantom reproducibility studies the T1 measurements had a maximum coefficient of variation (COV) of 1.3%. For the in vivo reproducibility the COV was below 5% in the anterior cardiac segments. In simulations with phantoms and specimens, a heart rate dependency of approximately 0.5 ms/bpm was present. The T1 maps of the cryo-infarcted rats showed a clear lowering of T1 in de LGE region. CONCLUSION: The results show that mCINE-IR is highly reproducible and that the sensitivity allows detecting T1 changes in the rat myocardium.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Cinemagnética/métodos , Infarto del Miocardio/patología , Miocardio/patología , Animales , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
8.
Recent Results Cancer Res ; 187: 3-63, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23179877

RESUMEN

Imaging in Oncology is rapidly moving from the detection and size measurement of a lesion to the quantitative assessment of metabolic processes and cellular and molecular interactions. Increasing insights into cancer as a complex disease with involvement of the tumor stroma in tumor pathobiological processes have made it clear that for successful control of cancer, treatment strategies should not only be directed at the tumor cells but also targeted at the tumor microenvironment. This requires understanding of the complex molecular and cellular interactions in cancer tissue. Recent developments in imaging technology have increased the possibility to image various pathobiological processes in cancer development and response to treatment. For computed tomography (CT) and magnetic resonance imaging (MRI) various improvements in hardware, software, and imaging probes have lifted these modalities from classical anatomical imaging techniques to techniques suitable to image and quantify various physiological processes and molecular and cellular interactions. Next to a more general overview of possible imaging targets in oncology this chapter provides an overview of the various developments in CT and MRI technology and some specific applications.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Neoplasias/patología , Tomografía Computarizada por Rayos X/métodos , Humanos , Neoplasias/diagnóstico por imagen
9.
Mol Imaging Biol ; 25(3): 560-568, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36482032

RESUMEN

PURPOSE: To support acquisition of accurate, reproducible and high-quality preclinical imaging data, various standardisation resources have been developed over the years. However, it is unclear the impact of those efforts in current preclinical imaging practices. To better understand the status quo in the field of preclinical imaging standardisation, the STANDARD group of the European Society of Molecular Imaging (ESMI) put together a community survey and a forum for discussion at the European Molecular Imaging Meeting (EMIM) 2022. This paper reports on the results from the STANDARD survey and the forum discussions that took place at EMIM2022. PROCEDURES: The survey was delivered to the community by the ESMI office and was promoted through the Society channels, email lists and webpages. The survey contained seven sections organised as generic questions and imaging modality-specific questions. The generic questions focused on issues regarding data acquisition, data processing, data storage, publishing and community awareness of international guidelines for animal research. Specific questions on practices in optical imaging, PET, CT, SPECT, MRI and ultrasound were further included. RESULTS: Data from the STANDARD survey showed that 47% of survey participants do not have or do not know if they have QC/QA guidelines at their institutes. Additionally, a large variability exists in the ways data are acquired, processed and reported regarding general aspects as well as modality-specific aspects. Moreover, there is limited awareness of the existence of international guidelines on preclinical (imaging) research practices. CONCLUSIONS: Standardisation of preclinical imaging techniques remains a challenge and hinders the transformative potential of preclinical imaging to augment biomedical research pipelines by serving as an easy vehicle for translation of research findings to the clinic. Data collected in this project show that there is a need to promote and disseminate already available tools to standardise preclinical imaging practices.


Asunto(s)
Investigación Biomédica , Animales , Encuestas y Cuestionarios , Estándares de Referencia , Imagen por Resonancia Magnética , Ultrasonografía
10.
Eur Radiol ; 22(1): 189-204, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21735069

RESUMEN

Stem cell therapies hold the great promise and interest for cardiac regeneration among scientists, clinicians and patients. However, advancement and distillation of a standard treatment regimen are not yet finalised. Into this breach step recent developments in the imaging biosciences. Thus far, these technical and protocol refinements have played a critical role not only in the evaluation of the recovery of cardiac function but also in providing important insights into the mechanism of action of stem cells. Molecular imaging, in its many forms, has rapidly become a necessary tool for the validation and optimisation of stem cell engrafting strategies in preclinical studies. These include a suite of radionuclide, magnetic resonance and optical imaging strategies to evaluate non-invasively the fate of transplanted cells. In this review, we highlight the state-of-the-art of the various imaging techniques for cardiac stem cell presenting the strengths and limitations of each approach, with a particular focus on clinical applicability.


Asunto(s)
Rastreo Celular/métodos , Cardiopatías/patología , Células Madre Pluripotentes Inducidas/patología , Imagen Molecular/métodos , Trasplante de Células Madre/métodos , Rastreo Celular/tendencias , Femenino , Cardiopatías/diagnóstico , Cardiopatías/cirugía , Humanos , Aumento de la Imagen/métodos , Masculino , Imagen Molecular/tendencias , Trasplante de Células Madre/tendencias , Resultado del Tratamiento
11.
Curr Radiopharm ; 14(3): 184-208, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33045975

RESUMEN

Acute myocardial infarction is one of the leading causes of death in the western world. Despite major improvements in myocardial reperfusion with sophisticated percutaneous coronary intervention technologies and new antithrombotic agents, there is still no effective therapy for preventing post- infarction myocardial injury and remodeling. Death of cardiomyocytes following ischemia results in "danger signals" that elicit an inflammatory reaction to remove cell debris and form scar tissue. Optimal healing of the damaged myocardial tissue requires a coordinated cellular response for sufficient wound healing and scar formation. However, if this inflammatory reaction is overactive or incompletely resolved, adverse left ventricular remodeling and heart failure may occur. Treatment aimed at the modulation of the post-MI inflammatory response has been widely pursued and investigated. Although improved infarct healing was shown in many experimental preclinical studies, to date, clinical trials using anti-inflammatory treatment strategies have been far less successful. Clearly, a need exists for predicting and selecting patients at risk and selecting the most appropriate therapy for individual patients. To this end, imaging of the post-MI response has been a topic of significant interest. In this review, we first discuss the clinical complications resulting from myocardial inflammation following AMI and the need for non-invasive imaging techniques using radiolabeled tracers. We then discuss the inflammatory reaction cascade following acute myocardial infarction, the inflammatory reaction cascade following acute myocardial infarction focusing on inflammatory cell types involved herein, and potential imaging targets for identifying these cells during the inflammatory process. In addition, we discuss specific characteristics and limitations of various preclinical animal models for ischemic heart disease since they are crucial in the development and evaluation of the imaging techniques. Finally, we discuss the need for non-invasive imaging approaches using radiolabeled tracers.


Asunto(s)
Inflamación/metabolismo , Imagen Molecular/tendencias , Infarto del Miocardio/diagnóstico por imagen , Isquemia Miocárdica/diagnóstico por imagen , Animales , Humanos , Infarto del Miocardio/complicaciones , Infarto del Miocardio/patología , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/patología , Miocitos Cardíacos/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos
12.
EJNMMI Res ; 11(1): 27, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33730311

RESUMEN

PURPOSE: Many radioligands have been developed for the visualization of atherosclerosis by targeting inflammation. However, interpretation of in vivo signals is often limited to plaque identification. We evaluated binding of some promising radioligands in an in vitro approach in atherosclerotic plaques with different phenotypes. METHODS: Tissue sections of carotid endarterectomy tissue were characterized as early plaque, fibro-calcific plaque, or phenotypically vulnerable plaque. In vitro binding assays for the radioligands [111In]In-DOTATATE; [111In]In-DOTA-JR11; [67Ga]Ga-Pentixafor; [111In]In-DANBIRT; and [111In]In-EC0800 were conducted, the expression of the radioligand targets was assessed via immunohistochemistry. Radioligand binding and expression of radioligand targets was investigated and compared. RESULTS: In sections characterized as vulnerable plaque, binding was highest for [111In]In-EC0800; followed by [111In]In-DANBIRT; [67Ga]Ga-Pentixafor; [111In]In-DOTA-JR11; and [111In]In-DOTATATE (0.064 ± 0.036; 0.052 ± 0.029; 0.011 ± 0.003; 0.0066 ± 0.0021; 0.00064 ± 0.00014 %Added activity/mm2, respectively). Binding of [111In]In-DANBIRT and [111In]In-EC0800 was highest across plaque phenotypes, binding of [111In]In-DOTA-JR11 and [67Ga]Ga-Pentixafor differed most between plaque phenotypes. Binding of [111In]In-DOTATATE was the lowest across plaque phenotypes. The areas positive for cells expressing the radioligand's target differed between plaque phenotypes for all targets, with lowest percentage area of expression in early plaque sections and highest in phenotypically vulnerable plaque sections. CONCLUSIONS: Radioligands targeting inflammatory cell markers showed different levels of binding in atherosclerotic plaques and among plaque phenotypes. Different radioligands might be used for plaque detection and discerning early from vulnerable plaque. [111In]In-EC0800 and [111In]In-DANBIRT appear most suitable for plaque detection, while [67Ga]Ga-Pentixafor and [111In]In-DOTA-JR11 might be best suited for differentiation between plaque phenotypes.

13.
Neoplasia ; 23(1): 80-98, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33246310

RESUMEN

BACKGROUND: Well-differentiated gastroenteropancreatic neuroendocrine neoplasms are rare tumors with a slow proliferation. They are virtually resistant to many DNA-damaging therapeutic approaches, such as chemo- and external beam therapy, which might be overcome by DNA damage inhibition induced by proteasome inhibitors such as bortezomib. METHODS AND RESULTS: In this study, we assessed several combined treatment modalities in vitro and in vivo. By cell-based functional analyses, in a 3D in ovo and an orthotopic mouse model, we demonstrated sensitizing effects of bortezomib combined with cisplatin, radiation and peptide receptor radionuclide therapy (PRRT). By gene expression profiling and western blot, we explored the underlying mechanisms, which resulted in an impaired DNA damage repair. Therapy-induced DNA damage triggered extrinsic proapoptotic signaling as well as the induction of cell cycle arrest, leading to a decreased vital tumor volume and altered tissue composition shown by magnetic resonance imaging and F-18-FDG-PET in vivo, however with no significant additional benefit related to PRRT alone. CONCLUSIONS: We demonstrated that bortezomib has short-term sensitizing effects when combined with DNA damaging therapy by interfering with DNA repair in vitro and in ovo. Nevertheless, due to high tumor heterogeneity after PRRT in long-term observations, we were not able to prove a therapeutic advantage of bortezomib-combined PRRT in an in vivo mouse model.


Asunto(s)
Antineoplásicos/farmacología , Bortezomib/farmacología , Daño del ADN/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Animales , Apoptosis , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/metabolismo , Redes Reguladoras de Genes , Humanos , Inmunohistoquímica , Ratones , Terapia Molecular Dirigida , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/metabolismo
14.
Eur Radiol ; 20(2): 255-74, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19672602

RESUMEN

Through labelling of cells with magnetic contrast agents it is possible to follow the fate of transplanted cells in vivo with magnetic resonance imaging (MRI) as has been demonstrated in animal studies as well as in a clinical setting. A large variety of labelling strategies are available that allow for prolonged and sensitive detection of the labelled cells with MRI. The various protocols each harbour specific advantages and disadvantages. In choosing a particular labelling strategy it is also important to ascertain that the labelling procedure does not negatively influence cell functionality, for which a large variety of assays are available. In order to overcome the challenges still faced in fully exploiting the benefits of in vivo cell tracking by MRI a good understanding and standardisation of the procedures and assays used will be crucial.


Asunto(s)
Células Cultivadas/citología , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/tendencias , Técnicas de Sonda Molecular/tendencias , Animales , Humanos , Coloración y Etiquetado/métodos , Coloración y Etiquetado/tendencias
15.
PLoS One ; 13(9): e0204354, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30235336

RESUMEN

In vivo cell tracking of therapeutic, tumor, and endothelial cells is an emerging field and a promising technique for imaging cardiovascular disease and cancer development. Site-specific labeling of endothelial cells with the MRI contrast agent superparamagnetic iron oxide (SPIO) in the absence of toxic agents is challenging. Therefore, the aim of this in vitro study was to find optimal parameters for efficient and safe SPIO-labeling of endothelial cells using ultrasound-activated CD31-targeted microbubbles for future MRI tracking. Ultrasound at a frequency of 1 MHz (10,000 cycles, repetition rate of 20 Hz) was used for varying applied peak negative pressures (10-160 kPa, i.e. low mechanical index (MI) of 0.01-0.16), treatment durations (0-30 s), time of SPIO addition (-5 min- 15 min with respect to the start of the ultrasound), and incubation time after SPIO addition (5 min- 3 h). Iron specific Prussian Blue staining in combination with calcein-AM based cell viability assays were applied to define the most efficient and safe conditions for SPIO-labeling. Optimal SPIO labeling was observed when the ultrasound parameters were 40 kPa peak negative pressure (MI 0.04), applied for 30 s just before SPIO addition (0 min). Compared to the control, this resulted in an approximate 12 times increase of SPIO uptake in endothelial cells in vitro with 85% cell viability. Therefore, ultrasound-activated targeted ultrasound contrast agents show great potential for effective and safe labeling of endothelial cells with SPIO.


Asunto(s)
Compuestos Férricos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Imanes , Microburbujas , Supervivencia Celular , Medios de Contraste/química , Humanos , Imagen por Resonancia Magnética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Coloración y Etiquetado , Ultrasonografía
16.
Mol Ther Methods Clin Dev ; 8: 152-165, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29687034

RESUMEN

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by thymidine phosphorylase (TP) deficiency resulting in systemic accumulation of thymidine (d-Thd) and deoxyuridine (d-Urd) and characterized by early-onset neurological and gastrointestinal symptoms. Long-term effective and safe treatment is not available. Allogeneic bone marrow transplantation may improve clinical manifestations but carries disease and transplant-related risks. In this study, lentiviral vector-based hematopoietic stem cell gene therapy (HSCGT) was performed in Tymp-/-Upp1-/- mice with the human phosphoglycerate kinase (PGK) promoter driving TYMP. Supranormal blood TP activity reduced intestinal nucleoside levels significantly at low vector copy number (median, 1.3; range, 0.2-3.6). Furthermore, we covered two major issues not addressed before. First, we demonstrate aberrant morphology of brain astrocytes in areas of spongy degeneration, which was reversed by HSCGT. Second, long-term follow-up and vector integration site analysis were performed to assess safety of the therapeutic LV vectors in depth. This report confirms and supplements previous work on the efficacy of HSCGT in reducing the toxic metabolites in Tymp-/-Upp1-/- mice, using a clinically applicable gene transfer vector and a highly efficient gene transfer method, and importantly demonstrates phenotypic correction with a favorable risk profile, warranting further development toward clinical implementation.

18.
J Clin Oncol ; 23(24): 5779-87, 2005 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-16110035

RESUMEN

PURPOSE: Tumor-specific immunomonitoring is essential to evaluate the efficacy of vaccination against cancer. In this study, we investigated the predictive value of the presence or absence of antigen-specific T cells in biopsies from delayed-type hypersensitivity (DTH) sites. PATIENTS AND METHODS: In our ongoing clinical trials, HLA-A2.1+ melanoma patients were vaccinated with mature dendritic cells (DC) pulsed with melanoma-associated peptides (gp100 and tyrosinase) and keyhole limpet hemocyanin. RESULTS: After intradermal administration of a DTH challenge with gp100- and tyrosinase peptide-loaded DC, essentially all patients showed a positive induration. In clinically responding patients, T cells specific for the antigen preferentially accumulated in the DTH site, as visualized by in situ tetramer staining. Furthermore, significant numbers of functional gp100 and tyrosinase tetramer-positive T cells could be isolated from these DTH biopsies, in accordance with the applied antigen in the DTH challenge. We observed a direct correlation between the presence of DC vaccine-related T cells in the DTH biopsies of stage IV melanoma patients and a positive clinical outcome (P = .0012). CONCLUSION: These findings demonstrate the potency of this novel approach in the monitoring of vaccination studies in cancer patients.


Asunto(s)
Vacunas contra el Cáncer/uso terapéutico , Células Dendríticas/inmunología , Hipersensibilidad Tardía/inmunología , Melanoma/inmunología , Melanoma/terapia , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/terapia , Linfocitos T Citotóxicos/inmunología , Adyuvantes Inmunológicos/farmacología , Biopsia , Citometría de Flujo , Hemocianinas/farmacología , Humanos , Melanoma/patología , Glicoproteínas de Membrana/farmacología , Monofenol Monooxigenasa/farmacología , Proteínas de Neoplasias/farmacología , Valor Predictivo de las Pruebas , Neoplasias Cutáneas/patología , Vacunación , Antígeno gp100 del Melanoma
19.
Contrast Media Mol Imaging ; 11(2): 106-14, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26463264

RESUMEN

Cationic liposomes carrying high [Gd] can be used as efficient cell-labeling agents. In a compartmentalized state, Gd can cause signal loss (relaxivity quenching). The contributions of liposomal [Gd], size and compartmentalization state to relaxivity quenching were assessed. The dependency of signal intensity (SI) on intraliposomal [Gd] was assessed comparing three different [Gd] (0.3, 0.6 and 1.0 M Gd) in both small (80 nm) and large (120 nm) cationic liposomes. In addition, five compartmentalization states were compared: free Gd, intact Gd liposomes, ruptured Gd liposomes, Gd liposomes in intact cells and Gd liposomes in ruptured cells (simulating cell death). Gd also causes R2 effects, which is often overlooked. Therefore, both R1 and R2 relaxation rates of a dilution range were measured by T1 and T2 mapping on a 7 T clinical scanner. Less is more. As the unidirectional water efflux rate (outbound across the liposome membrane, κle) is proportional to the surface:volume ratio, smaller liposomes yielded a consistently higher R1 than larger liposomes. For equal voxel [Gd] less concentrated liposomes (0.3 M Gd) yielded higher R1/R2 ratio because of the higher extraliposomal water fraction (vl ). Gd exhibits a dualistic behavior: from hypointensity to hyperintensity to hypointensity, with decreasing [Gd]. Regarding compartmentalization, fewer membrane barriers means a higher R1 /R2 ratio. Gd liposomes exhibit a versatile contrast behavior, dependent on the compartmentalization state, liposomal size, intraliposomal [Gd] and liposome number. Both R1 and R2 effects contribute to this. The versatility allows one to tailor the optimal liposomal formulation to desired goals in cell labeling and tracking.


Asunto(s)
Medios de Contraste/administración & dosificación , Gadolinio/administración & dosificación , Liposomas/administración & dosificación , Imagen por Resonancia Magnética , Línea Celular , Rastreo Celular/métodos , Medios de Contraste/química , Gadolinio/química , Humanos , Liposomas/química
20.
EJNMMI Res ; 6(1): 12, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26860294

RESUMEN

BACKGROUND: Single photon emission computed tomography (SPECT) is an indispensable tool in the determination of the in vivo fate of polymeric micelles. However, for this purpose, the micelles need to be radiolabeled, and almost all radiolabeling procedures published to date involve the conjugation of a chelating agent to the constituting polymer, which could actually affect their biodistribution. In this paper, we report a new facile method for radiolabeling polystyrene-b-poly(ethylene oxide) diblock copolymer micelles without the necessity of any chemical modification. Instead, we entrap the radiolabel (i.e., (111)In) in the micellar core during the formation of the micelles by using tropolone as lipophilic ligand. METHODS: Micelles were prepared by emulsifying a polymer solution in chloroform with a buffer containing (111)In and lipophilic ligand tropolone, by stirring for about 2 h. The produced micelles were physically characterized by means of dynamic light scattering and transmission electron microscopy. The biological properties of the radiolabeled micelles were determined by means of in vivo and ex vivo evaluation. SPECT analysis was done on Balb/c-nu mice, after administration of 1 mg micelles containing 22 MBq of (111)In. SPECT images were obtained over 24 h. Biodistribution of the micelles was assessed also ex vivo. RESULTS: The radiolabeling method is robust and reproducible with constant radiolabeling efficiency (~30 %) even at indium concentrations that are much higher than the necessary for in vivo studies, and the radiolabel retention is more than 80 % in mouse serum at 48 h. Radiolabeled micelles having hydrodynamic radius of 97 ± 13 nm have been successfully evaluated in vivo and ex vivo in non-tumor-bearing mice, revealing significant blood circulation up to at least 24 h post injection, with low accumulation in most organs except for the liver and spleen, which are the natural organs for clearance of nanoparticles. CONCLUSIONS: An easy and robust radiolabeling method has been developed, and its applicability is demonstrated in animal studies, showing its value for future investigation of polymeric micelles as nanocarriers in tumor-bearing mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA