Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circulation ; 135(10): 978-995, 2017 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-27834668

RESUMEN

BACKGROUND: Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro. METHODS: We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. RESULTS: We found that a combination of the transforming growth factor-ß inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency 8-fold when added to GMT-overexpressing cardiac fibroblasts. The small molecules also enhanced the speed and quality of cell conversion; we observed beating cells as early as 1 week after reprogramming compared with 6 to 8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared with those exposed to only GMT. Human cardiac reprogramming was similarly enhanced on transforming growth factor-ß and WNT inhibition and was achieved most efficiently with GMT plus myocardin. CONCLUSIONS: Transforming growth factor-ß and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration.


Asunto(s)
Benzamidas/farmacología , Reprogramación Celular/efectos de los fármacos , Dioxoles/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Factores de Transcripción/metabolismo , Animales , Benzamidas/uso terapéutico , Células Cultivadas , Dioxoles/uso terapéutico , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Corazón/diagnóstico por imagen , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Humanos , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Imagen por Resonancia Magnética , Ratones , Infarto del Miocardio/tratamiento farmacológico , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/metabolismo
2.
Nature ; 460(7256): 705-10, 2009 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-19578358

RESUMEN

MicroRNAs (miRNAs) are regulators of myriad cellular events, but evidence for a single miRNA that can efficiently differentiate multipotent stem cells into a specific lineage or regulate direct reprogramming of cells into an alternative cell fate has been elusive. Here we show that miR-145 and miR-143 are co-transcribed in multipotent murine cardiac progenitors before becoming localized to smooth muscle cells, including neural crest stem-cell-derived vascular smooth muscle cells. miR-145 and miR-143 were direct transcriptional targets of serum response factor, myocardin and Nkx2-5 (NK2 transcription factor related, locus 5) and were downregulated in injured or atherosclerotic vessels containing proliferating, less differentiated smooth muscle cells. miR-145 was necessary for myocardin-induced reprogramming of adult fibroblasts into smooth muscle cells and sufficient to induce differentiation of multipotent neural crest stem cells into vascular smooth muscle. Furthermore, miR-145 and miR-143 cooperatively targeted a network of transcription factors, including Klf4 (Kruppel-like factor 4), myocardin and Elk-1 (ELK1, member of ETS oncogene family), to promote differentiation and repress proliferation of smooth muscle cells. These findings demonstrate that miR-145 can direct the smooth muscle fate and that miR-145 and miR-143 function to regulate the quiescent versus proliferative phenotype of smooth muscle cells.


Asunto(s)
Linaje de la Célula , MicroARNs/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Femenino , Regulación de la Expresión Génica , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Factor 4 Similar a Kruppel , Masculino , Ratones , Ratones Transgénicos , MicroARNs/genética , Modelos Biológicos , Miocardio/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Enfermedades Vasculares/metabolismo , Proteína Elk-4 del Dominio ets/metabolismo
3.
Curr Opin Genet Dev ; 23(5): 574-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23993230

RESUMEN

Loss of cardiomyocytes from cardiovascular disease is irreversible and current therapeutic strategies do not redress the loss of myocardium after injury. The discovery that endogenous fibroblasts in the heart can be reprogrammed to cardiomyocyte-like cells after myocardial infarction and heart function is improved subsequently has strong implications in bringing this treatment paradigm to the clinic. Here we discuss the advances in direct cardiac reprogramming that will potentially act as a springboard in the generation of effective approaches to restoring cardiac function after injury.


Asunto(s)
Diferenciación Celular , Infarto del Miocardio/terapia , Miocardio/citología , Miocitos Cardíacos/citología , Animales , Reprogramación Celular/genética , Fibroblastos/citología , Fibroblastos/trasplante , Humanos , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Regeneración/genética
4.
Nat Protoc ; 8(6): 1204-15, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23722259

RESUMEN

Cardiac fibroblasts can be reprogrammed to cardiomyocyte-like cells by the introduction of three transcription factors: Gata4, Mef2c and Tbx5 (collectively referred to here as GMT). Resident cardiac fibroblasts can be converted in vivo into induced cardiomyocyte-like cells (iCMs) that closely resemble endogenous cardiomyocytes and electrically integrate with the host myocardium. In contrast, in vitro reprogramming yields many partially reprogrammed iCMs, with a few that reprogram fully into contracting myocytes (~3 out of 10,000 GMT-transduced cells). iCMs can be observed as early as 3 d after viral infection, and they continue to mature over 2 months before beating is observed. Despite the success of multiple groups, the inefficiency of in vitro reprogramming has made it challenging for others. However, given the advantages of in vitro iCMs for performing mechanistic studies and, if refined, for testing drugs or small molecules for personalized medicine and modeling cardiac disease in a dish, it is important to standardize the protocol to improve reproducibility and enhance the technology further. Here we describe a detailed step-by-step protocol for in vitro cardiac reprogramming using retroviruses encoding GMT.


Asunto(s)
Transdiferenciación Celular/fisiología , Fibroblastos/citología , Miocardio/citología , Miocitos Cardíacos/citología , Animales , Transdiferenciación Celular/genética , Factor de Transcripción GATA4/metabolismo , Vectores Genéticos , Factores de Transcripción MEF2/metabolismo , Ratones , Retroviridae , Proteínas de Dominio T Box/metabolismo
5.
PLoS One ; 3(10): e3346, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18833327

RESUMEN

BACKGROUND: The epidermal cells of the C. elegans embryo undergo coordinated cell shape changes that result in the morphogenetic process of elongation. The cytoskeletal ankyrin repeat protein VAB-19 is required for cell shape changes and localizes to cell-matrix attachment structures. The molecular functions of VAB-19 in this process are obscure, as no previous interactors for VAB-19 have been described. METHODOLOGY/PRINCIPAL FINDINGS: In screens for VAB-19 binding proteins we identified the signaling adaptor EPS-8. Within C. elegans epidermal cells, EPS-8 and VAB-19 colocalize at cell-matrix attachment structures. The central domain of EPS-8 is necessary and sufficient for its interaction with VAB-19. eps-8 null mutants, like vab-19 mutants, are defective in epidermal elongation and in epidermal-muscle attachment. The eps-8 locus encodes two isoforms, EPS-8A and EPS-8B, that appear to act redundantly in epidermal elongation. The function of EPS-8 in epidermal development involves its N-terminal PTB and central domains, and is independent of its C-terminal SH3 and actin-binding domains. VAB-19 appears to act earlier in the biogenesis of attachment structures and may recruit EPS-8 to these structures. CONCLUSIONS/SIGNIFICANCE: EPS-8 and VAB-19 define a novel pathway acting at cell-matrix attachments to regulate epithelial cell shape. This is the first report of a role for EPS-8 proteins in cell-matrix attachments. The existence of EPS-8B-like isoforms in Drosophila suggests this function of EPS-8 proteins could be conserved among other organisms.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas Portadoras/fisiología , Proteínas del Citoesqueleto/metabolismo , Epidermis/crecimiento & desarrollo , Actinas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Epistasis Genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA