Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(2): 1371-1380, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33393575

RESUMEN

Efficient hydrogen release from liquid organic hydrogen carriers (LOHCs) requires a high level of control over the catalytic properties of supported noble metal nanoparticles. Here, the formation of carbon-containing phases under operation conditions has a direct influence on the activity and selectivity of the catalyst. We studied the formation and stability of carbide phases using well-defined Pd/α-Al2O3(0001) model catalysts during dehydrogenation of a model LOHC, methylcyclohexane, in a flow reactor by in situ high-energy grazing incidence X-ray diffraction. The phase composition of supported Pd nanoparticles was investigated as a function of particle size and reaction conditions. Under operating conditions, we detected the formation of a PdxC phase followed by its conversion to Pd6C. The dynamic stability of the Pd6C phase results from the balance between uptake and release of carbon by the supported Pd nanoparticles in combination with the thermodynamically favorable growth of carbon deposits in the form of graphene. For small Pd nanoparticles (6 nm), the Pd6C phase is dynamically stable under low flow rate of reactants. At the high reactant flow, the Pd6C phase decomposes shortly after its formation due to the growth of graphene. Structural analysis of larger Pd nanoparticles (15 nm) reveals the formation and simultaneous presence of two types of carbides, PdxC and Pd6C. Formation and decomposition of Pd6C proceeds via a PdxC phase. After an incubation period, growth of graphene triggers the decomposition of carbides. The process is accompanied by segregation of carbon from the bulk of the nanoparticles to the graphene phase. Notably, nucleation of graphene is more favorable on bigger Pd nanoparticles. Our studies demonstrate that metastability of palladium carbides associated with dynamic formation and decomposition of the Pd6C and PdxC phases is an intrinsic phenomenon in LOHC dehydrogenation on Pd-based catalysts and strongly depends on particle size and reaction conditions.

2.
J Chem Phys ; 152(4): 044708, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32007072

RESUMEN

Employing molecular photoswitches, we can combine solar energy conversion, storage, and release in an extremely simple single molecule system. In order to release the stored energy as electricity, the photoswitch has to interact with a semiconducting electrode surface. In this work, we explore a solar-energy-storing model system, consisting of a molecular photoswitch anchored to an atomically defined oxide surface in a liquid electrolyte and under potential control. Previously, this model system has been proven to be operational under ultrahigh vacuum (UHV) conditions. We used the tailor-made norbornadiene derivative 2-cyano-3-(4-carboxyphenyl)norbornadiene (CNBD) and characterized its photochemical and electrochemical properties in an organic electrolyte. Next, we assembled a monolayer of CNBD on a well-ordered Co3O4(111) surface by physical vapor deposition in UHV. This model interface was then transferred into the liquid electrolyte and investigated by photoelectrochemical infrared reflection absorption spectroscopy experiments. We demonstrate that the anchored monolayer of CNBD can be converted photochemically to its energy-rich counterpart 2-cyano-3-(4-carboxyphenyl)quadricyclane (CQC) under potential control. However, the reconversion potential of anchored CQC overlaps with the oxidation and decomposition potential of CNBD, which limits the electrochemically triggered reconversion.

3.
Nat Mater ; 17(7): 592-598, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29867166

RESUMEN

Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future1-3. However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to 'electrify' complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal-support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal-support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.

4.
Phys Chem Chem Phys ; 21(42): 23364-23374, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31637373

RESUMEN

In this work, we investigated the interaction of phenylphosphonic acid (PPA, C6H5PO3H2) with atomically-defined Co3O4(111) thin films, grown on Ir(100), under ultrahigh vacuum (UHV) conditions and in the electrochemical environment. In the first step, we employed infrared reflection absorption spectroscopy (IRAS) and followed the formation of a saturated monolayer (380 K) in UHV. We observed that the binding motif changes from a chelating tridentate in the sub-monolayer regime to a chelating bidentate at full monolayer coverages. In the electrochemical environment, we analyzed the interaction of PPA with the same Co3O4(111) surface by electrochemical infrared reflection absorption spectroscopy (EC-IRRAS) (0.3 VRHE-1.3 VRHE). When adsorbed at pH 10 from an ammonia buffered aqueous solution, PPA binds to the surface in form of a fully deprotonated chelating bidentate. With increasing electrode potential, we observed two fully reversible processes. At low buffer concentration, protons are released upon oxidation of surface Co2+ ions and lead to protonation of the anchored phosphonates. At high buffer concentration, most of the protons released are accepted by NH3. Simultaneously, the surface phosphonate changes its adsorption motif from bidentate to tridentate while adopting a more upright geometry.

5.
Phys Chem Chem Phys ; 20(36): 23702-23716, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30191927

RESUMEN

We have studied particle size effects on atomically-defined model catalysts both in ultrahigh vacuum (UHV) and under electrochemical (EC) conditions in liquid electrolytes. The model catalysts were prepared in UHV by physical vapour deposition (PVD) of Pt onto an ordered Co3O4(111) film on Ir(100), yielding nanoparticles (NPs) with an average size from 10 to 500 atoms per particle (0.8 to 3 nm). The model systems were characterized in UHV using surface science methods including scanning tunnelling microscopy (STM), before transferring them out of the UHV and into the electrolyte without contact to ambient conditions. By X-ray photoelectron spectroscopy (XPS) we show that the model surfaces are stable in the EC environment under the applied conditions (0.1 to 1 M phosphate buffer, pH 10, 0.33 to 1.03 VRHE). As a reference, we study Pt(111) under identical conditions. In UHV, we also investigated the adsorption of CO using infrared reflection absorption spectroscopy (IRRAS). Under EC conditions, we performed equivalent experiments using EC infrared reflection absorption spectroscopy (EC-IRRAS) in combination with cyclic voltammetry (CV). Characteristic differences were observed between the IR spectra under EC conditions and in UHV. Besides the red-shift induced by the interfacial electric field (Stark effect), the EC IR bands of CO on Pt(111) show a larger width (by a factor of 2) as a result of local variations in the CO environment and coupling to the electrolyte. The CO IR bands of the Pt NPs are even broader (by a factor of 5), which is attributed to local variations of the interfacial electric field at the NP surface. Further pronounced differences are observed between the spectra taken in UHV and in the electrolyte regarding the site occupation and its dependence on particle size. In UHV, adsorption at on-top sites is preferred on Pt(111) at low coverage and similar adsorption ratios of on-top and bridge-bonded CO are formed at saturation coverage. In sharp contrast, on-top adsorption of CO on Pt(111) is partially suppressed under EC conditions. This effect is attributed to the competitive adsorption of anions from the electrolyte and leads to a clear preference for bridge sites at higher potentials (>0.5 VRHE). For the Pt NPs, the situation is different and an increasing fraction of on-top CO is observed with decreasing particle size, both under EC conditions and in UHV. For the smallest particles (10-20 atoms) we do not detect any bridge-bonded CO. This change in site preference as a function of particle size is attributed to stronger on-top adsorption on low-coordinated Pt atoms of small Pt NPs. The effect leads to a clear preference for on-top adsorption in the electrolyte even at low CO coverage and over the full potential range studied.

6.
ChemSusChem ; 15(18): e202200958, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35762102

RESUMEN

Molecular solar thermal (MOST) systems combine solar energy conversion, storage, and release in simple one-photon one-molecule processes. Here, we address the electrochemically triggered energy release from an azothiophene-based MOST system by photoelectrochemical infrared reflection absorption spectroscopy (PEC-IRRAS) and density functional theory (DFT). Specifically, the electrochemically triggered back-reaction from the energy rich (Z)-3-cyanophenylazothiophene to its energy lean (E)-isomer using highly oriented pyrolytic graphite (HOPG) as the working electrode was studied. Theory predicts that two reaction channels are accessible, an oxidative one (hole-catalyzed) and a reductive one (electron-catalyzed). Experimentally it was found that the photo-isomer decomposes during hole-catalyzed energy release. Electrochemically triggered back-conversion was possible, however, through the electron-catalyzed reaction channel. The reaction rate could be tuned by the electrode potential within two orders of magnitude. It was shown that the MOST system withstands 100 conversion cycles without detectable decomposition of the photoswitch. After 100 cycles, the photochemical conversion was still quantitative and the electrochemically triggered back-reaction reached 94 % of the original conversion level.

7.
ACS Catal ; 12(6): 3256-3268, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35359579

RESUMEN

Co oxides and oxyhydroxides have been studied extensively in the past as promising electrocatalysts for the oxygen evolution reaction (OER) in neutral to alkaline media. Earlier studies showed the formation of an ultrathin CoO x (OH) y skin layer on Co3O4 at potentials above 1.15 V vs reversible hydrogen electrode (RHE), but the precise influence of this skin layer on the OER reactivity is still under debate. We present here a systematic study of epitaxial spinel-type Co3O4 films with defined (111) orientation, prepared on different substrates by electrodeposition or physical vapor deposition. The OER overpotential of these samples may vary up to 120 mV, corresponding to two orders of magnitude differences in current density, which cannot be accounted for by differences in the electrochemically active surface area. We demonstrate by a careful analysis of operando surface X-ray diffraction measurements that these differences are clearly correlated with the average thickness of the skin layer. The OER reactivity increases with the amount of formed skin layer, indicating that the entire three-dimensional skin layer is an OER-active interphase. Furthermore, a scaling relationship between the reaction centers in the skin layer and the OER activity is established. It suggests that two lattice sites are involved in the OER mechanism.

8.
J Phys Chem Lett ; 11(19): 8365-8371, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32909431

RESUMEN

Oxide supports can modify and stabilize platinum nanoparticles (NPs) in electrocatalytic materials. We studied related phenomena on model systems consisting of Pt NPs on atomically defined Co3O4(111) thin films. Chemical states and dissolution behavior of model catalysts were investigated as a function of the particle size and the electrochemical potential by ex situ emersion synchrotron radiation photoelectron spectroscopy and by online inductively coupled plasma mass spectrometry. Electronic metal-support interaction (EMSI) yields partially oxidized Ptδ+ species at the metal/support interface of metallic nanometer-sized Pt NPs. In contrast, subnanometer particles form Ptδ+ aggregates that are exclusively accompanied by subsurface Pt4+ species. Dissolution of Cox+ ions is strongly coupled to the presence of Ptδ+ and the reduction of subsurface Pt4+ species. Our findings suggest that EMSI directly affects the integrity of oxide-based electrocatalysts and may be employed to stabilize Pt NPs against sintering and dissolution.

9.
J Phys Chem Lett ; 10(20): 6129-6136, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31553619

RESUMEN

Quantitative assessment of the charge transfer phenomena in cobalt oxides and cobalt complexes is essential for the design of advanced catalytic materials. We propose a method for the evaluation of the oxidation state of cobalt oxides with mixed valence states using resonant photoemission spectroscopy. The method is based on the calculation of the resonant enhancement ratio (RER) from the heights of the resonant features associated with the Co3+ and Co2+ states. The nature of the corresponding states was corroborated by means of density functional calculations. We employed a well-ordered Co3O4(111) film to calibrate the RER with respect to the atomic Co3+/Co2+ ratio. The method was applied to monitor the reduction of a well-ordered Co3O4(111) film to CoO(111) upon annealing under exposure to isopropanol. We demonstrate that this method yields the stoichiometry of cobalt oxides at a level of accuracy that cannot be achieved when fitting the Co 2p core level spectra.

10.
Rev Sci Instrum ; 89(11): 114101, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30501282

RESUMEN

Model studies at complex, yet well-defined electrodes can provide a better understanding of electrocatalytic reactions. New experimental devices are required to prepare such model electrocatalysts with atomic-level control. In this work, we discuss the design of a new setup, which enables the preparation of well-defined electrocatalysts in ultra-high vacuum (UHV) using the full portfolio of surface science techniques. The setup allows for direct transfer of samples from UHV and the immersion into the electrolyte without contact to air. As a special feature, the single crystal sample is transferred without any sample holder, which makes the system easily compatible with most electrochemical in situ methods, specifically with electrochemical infrared reflection absorption spectroscopy, but also with other characterization methods such as single-crystal cyclic voltammetry, differential electrochemical mass spectrometry, or electrochemical scanning tunneling microscopy. We demonstrate the preparation in UHV, the transfer in inert atmosphere, and the immersion into the electrolyte for a complex model catalyst that requires surface science methods for preparation. Specifically, we study Pt nanoparticles supported on well-ordered Co3O4(111) films which are grown on an Ir(100) single crystal. In comparison with reference experiments on Pt(111), the model catalyst shows a remarkably different adsorption and reaction behavior during CO electrooxidation in alkaline environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA