Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34960280

RESUMEN

Advancements in motion sensing technology can potentially allow clinicians to make more accurate range-of-motion (ROM) measurements and informed decisions regarding patient management. The aim of this study was to systematically review and appraise the literature on the reliability of the Kinect, inertial sensors, smartphone applications and digital inclinometers/goniometers to measure shoulder ROM. Eleven databases were screened (MEDLINE, EMBASE, EMCARE, CINAHL, SPORTSDiscus, Compendex, IEEE Xplore, Web of Science, Proquest Science and Technology, Scopus, and PubMed). The methodological quality of the studies was assessed using the consensus-based standards for the selection of health Measurement Instruments (COSMIN) checklist. Reliability assessment used intra-class correlation coefficients (ICCs) and the criteria from Swinkels et al. (2005). Thirty-two studies were included. A total of 24 studies scored "adequate" and 2 scored "very good" for the reliability standards. Only one study scored "very good" and just over half of the studies (18/32) scored "adequate" for the measurement error standards. Good intra-rater reliability (ICC > 0.85) and inter-rater reliability (ICC > 0.80) was demonstrated with the Kinect, smartphone applications and digital inclinometers. Overall, the Kinect and ambulatory sensor-based human motion tracking devices demonstrate moderate-good levels of intra- and inter-rater reliability to measure shoulder ROM. Future reliability studies should focus on improving study design with larger sample sizes and recommended time intervals between repeated measurements.


Asunto(s)
Articulación del Hombro , Hombro , Humanos , Rango del Movimiento Articular , Reproducibilidad de los Resultados , Extremidad Superior
2.
Sensors (Basel) ; 20(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348775

RESUMEN

BACKGROUND: Objective assessment of shoulder joint active range of motion (AROM) is critical to monitor patient progress after conservative or surgical intervention. Advancements in miniature devices have led researchers to validate inertial sensors to capture human movement. This study investigated the construct validity as well as intra- and inter-rater reliability of active shoulder mobility measurements using a coupled system of inertial sensors and the Microsoft Kinect (HumanTrak). METHODS: 50 healthy participants with no history of shoulder pathology were tested bilaterally for fixed and free ROM: (1) shoulder flexion, and (2) abduction using HumanTrak and goniometry. The repeat testing of the standardised protocol was completed after seven days by two physiotherapists. RESULTS: All HumanTrak shoulder movements demonstrated adequate reliability (intra-class correlation (ICC) ≥ 0.70). HumanTrak demonstrated higher intra-rater reliability (ICCs: 0.93 and 0.85) than goniometry (ICCs: 0.75 and 0.53) for measuring free shoulder flexion and abduction AROM, respectively. Similarly, HumanTrak demonstrated higher intra-rater reliability (ICCs: 0.81 and 0.94) than goniometry (ICCs: 0.70 and 0.93) for fixed flexion and abduction AROM, respectively. Construct validity between HumanTrak and goniometry was adequate except for free abduction. The differences between raters were predominately acceptable and below ±10°. CONCLUSIONS: These results indicated that the HumanTrak system is an objective, valid and reliable way to assess and track shoulder ROM.


Asunto(s)
Rango del Movimiento Articular , Hombro , Dispositivos Electrónicos Vestibles , Fenómenos Biomecánicos , Humanos , Reproducibilidad de los Resultados
3.
Artículo en Inglés | MEDLINE | ID: mdl-36361321

RESUMEN

This study determined the intra- and inter-rater reliability of various shoulder testing methods to measure flexion range of motion (ROM), hand-behind-back (HBB), and external rotation (ER) strength. Twenty-four healthy adults (mean age of 31.2 and standard deviation (SD) of 10.9 years) without shoulder or neck pathology were assessed by two examiners using standardised testing protocols to measure shoulder flexion with still photography, HBB with tape measure, and isometric ER strength in two abduction positions with a hand-held dynamometer (HHD) and novel stabilisation device. Intraclass correlation coefficient (ICC) established relative reliability. Standard error of measurement (SEM) and minimum detectable change (MDC) established absolute reliability. Differences between raters were visualised with Bland-Altman plots. A paired t-test assessed for differences between dominant and non-dominant sides. Still photography demonstrated good intra- and inter-rater reliability (ICCs 0.75-0.86). HBB with tape measure demonstrated excellent inter- and intra-rater reliability (ICCs 0.94-0.98). Isometric ER strength with HHD and a stabilisation device demonstrated excellent intra-rater and inter-rater reliability in 30° and 45° abduction (ICCs 0.96-0.98). HBB and isometric ER at 45° abduction differed significantly between dominant and non-dominant sides. Standardised shoulder ROM and strength tests provide good to excellent reliability. HBB with tape measure and isometric strength testing with HHD stabilisation are clinically acceptable.


Asunto(s)
Articulación del Hombro , Hombro , Adulto , Humanos , Reproducibilidad de los Resultados , Voluntarios Sanos , Rango del Movimiento Articular , Fuerza Muscular
4.
J Spine Surg ; 8(1): 93-102, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35441107

RESUMEN

Background: Cervical spine range of motion (ROM) assessment has long been carried out via use of the universal goniometer (UG) as an objective tool in the evaluation of patient rehabilitation pre- and post-operatively. The advent of novel ROM assessment technology, such as HALO digital goniometer (DG), presents an avenue for research and potential application within clinical and surgical settings. The objective of this study was to examine the reliability and validity of the HALO DG in the assessment of the active ROM of the cervical spine. Methods: One hundred healthy subjects were recruited for the study and were split into two groups to be assessed by either physiotherapists or medical students. The methodology for cervical spine ROM assessment was carried out per the American Association of Orthopaedic Surgeons (AAOS) guidelines. The reliability analysis was completed using IBM SPSS Statistics 25, calculating the intraclass correlation coefficients (ICC) to determine both the intra- and inter-rater reliability of the device. Results: Inter-rater reliability within the physiotherapist cohort with the DG (ICCr =0.477, 0.718, 0.551) was higher compared to the UG (ICCr =0.380, 0.510, 0.255) for active cervical flexion, lateral flexion, and rotation, respectively. The UG (ICCr =0.819) showed better reliability versus the DG (ICCr =0.780) when assessing cervical extension. Similarly, in the medical student cohort, the DG outperformed the UG in all movement except cervical lateral flexion. When assessing for intra-rater reliability, the DG (ICCm =0.507, 0.773, 0.728, 0.691) performed better than the UG (ICCm =0.487, 0.529, 0.532, 0.585) in cervical flexion, extension, lateral flexion, and rotation, respectively. Conclusions: The present validation study identified the DG as a reliable substitute for the UG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA