Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 8(6): e1002733, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685400

RESUMEN

Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella.


Asunto(s)
Adhesinas Bacterianas/genética , Filogenia , Mutación Puntual , Infecciones por Salmonella/genética , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Evolución Biológica , Técnicas de Inactivación de Genes , Humanos , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Virulencia/genética
2.
Infect Immun ; 77(9): 3713-21, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19564389

RESUMEN

In addition to causing diarrhea, Escherichia coli O157:H7 infection can lead to hemolytic-uremic syndrome (HUS), a severe disease characterized by hemolysis and renal failure. Differences in HUS frequency among E. coli O157:H7 outbreaks have been noted, but our understanding of bacterial factors that promote HUS is incomplete. In 2006, in an outbreak of E. coli O157:H7 caused by consumption of contaminated spinach, there was a notably high frequency of HUS. We sequenced the genome of the strain responsible (TW14359) with the goal of identifying candidate genetic factors that contribute to an enhanced ability to cause HUS. The TW14359 genome contains 70 kb of DNA segments not present in either of the two reference O157:H7 genomes. We identified seven putative virulence determinants, including two putative type III secretion system effector proteins, candidate genes that could result in increased pathogenicity or, alternatively, adaptation to plants, and an intact anaerobic nitric oxide reductase gene, norV. We surveyed 100 O157:H7 isolates for the presence of these putative virulence determinants. A norV deletion was found in over one-half of the strains surveyed and correlated strikingly with the absence of stx(1). The other putative virulence factors were found in 8 to 35% of the O157:H7 isolates surveyed, and their presence also correlated with the presence of norV and the absence of stx(1), indicating that the presence of norV may serve as a marker of a greater propensity for HUS, similar to the correlation between the absence of stx(1) and a propensity for HUS.


Asunto(s)
Brotes de Enfermedades , Escherichia coli O157/genética , Escherichia coli O157/patogenicidad , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/microbiología , Genoma Bacteriano , Spinacia oleracea/microbiología , ADN Bacteriano/análisis , Síndrome Hemolítico-Urémico/etiología , Polimorfismo Genético , Toxina Shiga II/genética , Virulencia
3.
Infect Immun ; 75(7): 3548-55, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17502398

RESUMEN

FimH is the tip adhesin of mannose-specific type 1 fimbriae of Escherichia coli, which are critical to the pathogenesis of urinary tract infections. Point FimH mutations increasing monomannose (1M)-specific uroepithelial adhesion are commonly found in uropathogenic strains of E. coli. Here, we demonstrate the emergence of a mixed population of clonally identical E. coli strains in the urine of a patient with acute cystitis, where half of the isolates carried a glycine-to-arginine substitution at position 66 of the mature FimH. The R66 mutation induced an unusually strong 1M-binding phenotype and a 20-fold advantage in mouse bladder colonization. However, E. coli strains carrying FimH-R66, but not the parental FimH-G66, had disappeared from the patient's rectal and urine samples collected from 29 to 44 days later, demonstrating within-host instability of the R66 mutation. No FimH variants with R66 were identified in a large (>600 strains) sequence database of fimH-positive E. coli strains. However, several strains carrying genes encoding FimH with either S66 or C66 mutations appeared to be relatively stable in the E. coli population. Relative to FimH-R66, the FimH-S66 and FimH-C66 variants mediated only moderate increases in 1M binding but preserved the ability to enhance binding under flow-induced shear conditions. In contrast, FimH-R66 completely lost shear-enhanced binding properties, with bacterial adhesion being inhibited by shear forces and lacking a rolling mode of binding. These functional trade-offs may determine the natural populational instability of this mutation or other pathoadaptive FimH mutations that confer dramatic increases in 1M binding strength.


Asunto(s)
Adaptación Fisiológica/genética , Adhesinas de Escherichia coli/genética , Escherichia coli/patogenicidad , Proteínas Fimbrias/genética , Manosa/metabolismo , Mutación/genética , Infecciones Urinarias/microbiología , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Adhesión Bacteriana , Secuencia de Bases , Cistitis/microbiología , Escherichia coli/genética , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Humanos , Ratones , Ratones Endogámicos C3H , Datos de Secuencia Molecular , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA