Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nano Lett ; 24(10): 3014-3020, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427697

RESUMEN

Knowledge of the atomic structure of layer-stacked two-dimensional conjugated metal-organic frameworks (2D c-MOFs) is an essential prerequisite for establishing their structure-property correlation. For this, atomic resolution imaging is often the method of choice. In this paper, we gain a better understanding of the main properties contributing to the electron beam resilience and the achievable resolution in the high-resolution TEM images of 2D c-MOFs, which include chemical composition, density, and conductivity of the c-MOF structures. As a result, sub-angstrom resolution of 0.95 Å has been achieved for the most stable 2D c-MOF of the considered structures, Cu3(BHT) (BHT = benzenehexathiol), at an accelerating voltage of 80 kV in a spherical and chromatic aberration-corrected TEM. Complex damage mechanisms induced in Cu3(BHT) by the elastic interactions with the e-beam have been explained using detailed ab initio molecular dynamics calculations. Experimental and calculated knock-on damage thresholds are in good agreement.

2.
Acc Chem Res ; 56(17): 2267-2277, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37585560

RESUMEN

ConspectusThe review improves our understanding of how electrostatic interactions in the electrolyte, gas phase, and on surfaces can drive the fragmentation and assembly of particles. This is achieved through the overview of our advanced theoretical and computational modeling toolbox suitable for interpretation of experimental observations and discovery of novel, tunable assemblies and architectures. In the past decade, we have produced a significant, fundamental body of work on the development of comprehensive theories based on a rigorous mathematical foundation. These solutions are capable of accurate predictions of electrostatic interactions between dielectric particles of arbitrary size, anisotropy, composition, and charge, interacting in solvents, ionized medium, and on surfaces. We have applied the developed electrostatic approaches to describe physical and chemical phenomena in dusty plasma and planetary environments, in Coulomb fission and electrospray ionization processes, and in soft matter, including a counterintuitive but widespread attraction between like-charged particles.Despite its long history, the search for accurate methods to provide a deeper understanding of electrostatic interactions remains a subject of significant interest, as manifested by a constant stream of theoretical and experimental publications. While major international effort in this area has focused predominantly on the computational modeling of biocatalytic and biochemical performance, we have expanded the boundaries of accuracy, generality, and applicability of underlying theories. Simple solvation models, often used in calculating the electrostatic component of molecular solvation energy and polarization effects of solvent, rarely go beyond the induced dipole approximation because of computational costs. These approximations are generally adequate at larger separation distances; however, as particles approach the touching point, more advanced charged-induced multipolar descriptions of the electrostatic interactions are required to describe accurately a collective behavior of polarizable neutral and charged particles. At short separations, the electrostatic forces involving polarizable dielectric and conducting particles become nonadditive which necessitates further developments of quantitatively accurate many-body approaches. In applications, the electrostatic response of materials is commonly controlled by externally applied electric fields, an additional complex many-body problem that we have addressed most recently, both theoretically and numerically.This review reports on the most significant results and conclusions underpinning these recent advances in electrostatic theory and its applications. We first discuss the limitations of classical approaches to interpreting electrostatic phenomena in electrolytes and complex plasmas, leading to an extended analytical theory suitable for accurate estimation of the electrostatic forces in a dilute solution of a strong electrolyte. We then introduce the concept and numerical realization of many-body electrostatic theory focusing on its performance in selected experimental cases. These experiments underpin, among other applications, electrostatic self-assembly of two-dimensional lattice structures, melting of ionic colloidal crystals in an external electric field, and coalescence of charged clusters.

3.
Nano Lett ; 23(17): 8006-8012, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37594260

RESUMEN

The production of atomically dispersed metal catalysts remains a significant challenge in the field of heterogeneous catalysis due to coexistence with continuously packed sites such as nanoclusters and nanoparticles. This work presents a comprehensive guidance on how to increase the degree of atomization through a selection of appropriate experimental conditions and supports. It is based on a rigorous macro-kinetic theory that captures relevant competing processes of nucleation and formation of single atoms stabilized by point defects. The effects of metal-support interactions and deposition parameters on the resulting single atom to nanocluster ratio as well as the role of metal centers formed on point defects in the kinetics of nucleation have been established, thus paving the way to guided synthesis of single atom catalysts. The predictions are supported by experimental results on sputter deposition of Pt on exfoliated hexagonal boron nitride, as imaged by aberration-corrected scanning transmission electron microscopy.

4.
Phys Chem Chem Phys ; 24(17): 10044-10052, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35415738

RESUMEN

Nanoparticle lattices and endohedral fullerenes have both been identified as potential building blocks for future electronic, magnetic and optical devices; here it is proposed that it could be possible to combine those concepts and design stable nanoparticle lattices composed from binary collections of endohedral fullerenes. The inclusion of an atom, for example Ca or F, within a fullerene cage is known to be accompanied by a redistribution of surface charge, whereby the cage can acquire either a negative (Ca) or positive (F) charge. From calculations involving a combination of van der Waals and many-body electrostatic interactions, it is predicted that certain binary combinations, for example a metal (A) and a halogen (B), could result in the formation of stable nanoparticle lattices with the familiar AB and AB2 stoichiometries. Much of the stability is due to Coulomb interactions, however, charge-induced and van der Waals interactions, which always enhance stability, are found to extend the range of charge on a cage over which lattices are stable. Some lattice types are shown to be three or four times more stable than an equivalent neutral C60 structure. An extension of the calculations to the fabrication of structures involving endohedral C84 is also discussed.

5.
J Am Chem Soc ; 143(9): 3348-3358, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33625838

RESUMEN

The desolvated (3,24)-connected metal-organic framework (MOF) material, MFM-160a, [Cu3(L)(H2O)3] [H6L = 1,3,5-triazine-2,4,6-tris(aminophenyl-4-isophthalic acid)], exhibits excellent high-pressure uptake of CO2 (110 wt% at 20 bar, 298 K) and highly selective separation of C2 hydrocarbons from CH4 at 1 bar pressure. Henry's law selectivities of 79:1 for C2H2:CH4 and 70:1 for C2H4:CH4 at 298 K are observed, consistent with ideal adsorption solution theory (IAST) predictions. Significantly, MFM-160a shows a selectivity of 16:1 for C2H2:CO2. Solid-state 2H NMR spectroscopic studies on partially deuterated MFM-160-d12 confirm an ultra-low barrier (∼2 kJ mol-1) to rotation of the phenyl group in the activated MOF and a rotation rate 5 orders of magnitude slower than usually observed for solid-state materials (1.4 × 106 Hz cf. 1011-1013 Hz). Upon introduction of CO2 or C2H2 into desolvated MFM-160a, this rate of rotation was found to increase with increasing gas pressure, a phenomenon attributed to the weakening of an intramolecular hydrogen bond in the triazine-containing linker upon gas binding. DFT calculations of binding energies and interactions of CO2 and C2H2 around the triazine core are entirely consistent with the 2H NMR spectroscopic observations.

6.
Faraday Discuss ; 231(0): 235-257, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34517410

RESUMEN

Applications of biomethane as a source of renewable energy and transport fuel rely heavily on successful implementation of purification methods capable of removing undesirable impurities from biogas and increasing its calorific content. Metal-organic frameworks (MOFs) are competitive candidates for biogas upgrading due to a versatile range of attractive physical and chemical properties which can be utilised in membrane materials. In this work, we present a high-throughput computational screening methodology for efficient identification of MOF structures with promising gas separation performance. The proposed screening strategy is based on initial structural analysis and predictions of the single-component permeation of CO2, CH4 and H2S from adsorption and diffusion calculations at infinite dilution. The identified top performing candidates are subject to further analysis of their gas separation performance at the operating conditions of 10 bar and 298 K, using grand canonical Monte Carlo and equilibrium molecular dynamics simulations on equimolar CO2/CH4 and H2S/CH4 mixtures. The Henry constant for the adsorption of H2O was also calculated to determine the hydrophobicity of MOF structures, as the presence of H2O often leads to membrane instability and performance limitations. For the considered gas mixtures, the top MOF candidates exhibit superior separation capabilities over polymer-, zeolite-, and mixed matrix-based membranes as indicated by the predicted values of selectivity and permeability. The proposed screening protocol offers a powerful tool for the rational design of novel MOFs for biogas upgrading.


Asunto(s)
Biocombustibles , Estructuras Metalorgánicas , Adsorción , Dióxido de Carbono , Ensayos Analíticos de Alto Rendimiento
7.
Nano Lett ; 20(1): 278-283, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31821763

RESUMEN

We show that ordered monolayers of organic molecules stabilized by hydrogen bonding on the surface of exfoliated few-layer hexagonal boron nitride (hBN) flakes may be incorporated into van der Waals heterostructures with integral few-layer graphene contacts forming a molecular/two-dimensional hybrid tunneling diode. Electrons can tunnel through the hBN/molecular barrier under an applied voltage VSD, and we observe molecular electroluminescence from an excited singlet state with an emitted photon energy hν > eVSD, indicating upconversion by energies up to ∼1 eV. We show that tunneling electrons excite embedded molecules into singlet states in a two-step process via an intermediate triplet state through inelastic scattering and also observe direct emission from the triplet state. These heterostructures provide a solid-state device in which spin-triplet states, which cannot be generated by optical transitions, can be controllably excited and provide a new route to investigate the physics, chemistry, and quantum spin-based applications of triplet generation, emission, and molecular photon upconversion.

8.
Small ; 16(14): e2000442, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32181972

RESUMEN

A directed attractive interaction between predefined "patchy" sites on the surfaces of anisotropic microcolloids can provide them with the ability to self-assemble in a controlled manner to build target structures of increased complexity. An important step toward the controlled formation of a desired superstructure is to identify reversible electrostatic interactions between patches which allow them to align with one another. The formation of bipatchy particles with two oppositely charged patches fabricated using sandwich microcontact printing is reported. These particles spontaneously self-aggregate in solution, where a diversity of short and long chains of bipatchy particles with different shapes, such as branched, bent, and linear, are formed. Calculations show that chain formation is driven by a combination of attractive electrostatic interactions between oppositely charged patches and the charge-induced polarization of interacting particles.

9.
Phys Rev Lett ; 125(20): 206803, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33258651

RESUMEN

The electronic structure of a molecular quantum ring (stacks of 40-unit cyclic porphyrin polymers) is characterized via scanning tunneling microscopy and scanning tunneling spectroscopy. Our measurements access the energetic and spatial distribution of the electronic states and, utilizing a combination of density functional theory and tight-binding calculations, we interpret the experimentally obtained electronic structure in terms of coherent quantum states confined around the circumference of the π-conjugated macrocycle. These findings demonstrate that large (53 nm circumference) cyclic porphyrin polymers have the potential to act as molecular quantum rings.

10.
Inorg Chem ; 59(21): 15646-15658, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33044820

RESUMEN

Designing porous materials which can selectively adsorb CO2 or CH4 is an important environmental and industrial goal which requires an understanding of the host-guest interactions involved at the atomic scale. Metal-organic polyhedra (MOPs) showing permanent porosity upon desolvation are rarely observed. We report a family of MOPs (Cu-1a, Cu-1b, Cu-2), which derive their permanent porosity from cavities between packed cages rather than from within the polyhedra. Thus, for Cu-1a, the void fraction outside the cages totals 56% with only 2% within. The relative stabilities of these MOP structures are rationalized by considering their weak nondirectional packing interactions using Hirshfeld surface analyses. The exceptional stability of Cu-1a enables a detailed structural investigation into the adsorption of CO2 and CH4 using in situ X-ray and neutron diffraction, coupled with DFT calculations. The primary binding sites for adsorbed CO2 and CH4 in Cu-1a are found to be the open metal sites and pockets defined by the faces of phenyl rings. More importantly, the structural analysis of a hydrated sample of Cu-1a reveals a strong hydrogen bond between the adsorbed CO2 molecule and the Cu(II)-bound water molecule, shedding light on previous empirical and theoretical observations that partial hydration of metal-organic framework (MOF) materials containing open metal sites increases their uptake of CO2. The results of the crystallographic study on MOP-gas binding have been rationalized using DFT calculations, yielding individual binding energies for the various pore environments of Cu-1a.

11.
Phys Chem Chem Phys ; 22(22): 12482-12488, 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32469351

RESUMEN

An interface between poly(methyl-methacrylate) PMMA-supported phosphorene and layers of linear alkane chains has been studied computationally to reveal an efficient route to noncovalent passivation in terms of the effective coverage of surface area. The formation of strongly ordered compact planar aggregates of alkanes driven by the anisotropy of the phosphorene surface greatly improves the packing at the interface. Small mechanical deformations of the phosphorene structure induced by the interaction with PMMA substrate, a polymer dielectric material, do not alter substantially the mechanical, electronic properties of phosphorene. This indicates remarkable possibilities of using alkanes for prevention of phosphorene from surface degradation phenomena and suggests new technological routes for the fabrication of phosphorene-based electronic devices.

12.
J Chem Phys ; 152(2): 024121, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31941309

RESUMEN

Theory is developed to address the significant problem of electrostatic interactions between charged polarizable dielectric spheroids. The electrostatic force is defined by particle dimensions and charge, dielectric constants of the interacting particles and medium, and the interparticle separation distance; and it is expressed in the form of an integral over the particle surface. The switching behavior between like charge repulsion and attraction is demonstrated as depending on the ratio of the major and minor axes of spheroids. When the major and minor axes are equal, the theory yields a solution equivalent to that obtained for spherical particles. Limiting cases are presented for nonpolarizable spheroids, which describe the electrostatic behavior of charged rods, discs, and point charges. The developed theory represents an important step toward comprehensive understanding of direct interactions and mechanisms of electrostatically driven self-assembly processes.

13.
Proc Natl Acad Sci U S A ; 114(12): 3056-3061, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28280097

RESUMEN

Modulation and precise control of porosity of metal-organic frameworks (MOFs) is of critical importance to their materials function. Here we report modulation of porosity for a series of isoreticular octacarboxylate MOFs, denoted MFM-180 to MFM-185, via a strategy of selective elongation of metal-organic cages. Owing to the high ligand connectivity, these MOFs do not show interpenetration, and are robust structures that have permanent porosity. Interestingly, activated MFM-185a shows a high Brunauer-Emmett-Teller (BET) surface area of 4,734 m2 g-1 for an octacarboxylate MOF. These MOFs show remarkable CH4 and CO2 adsorption properties, notably with simultaneously high gravimetric and volumetric deliverable CH4 capacities of 0.24 g g-1 and 163 vol/vol (298 K, 5-65 bar) recorded for MFM-185a due to selective elongation of tubular cages. The dynamics of molecular rotors in deuterated MFM-180a-d16 and MFM-181a-d16 were investigated by variable-temperature 2H solid-state NMR spectroscopy to reveal the reorientation mechanisms within these materials. Analysis of the flipping modes of the mobile phenyl groups, their rotational rates, and transition temperatures paves the way to controlling and understanding the role of molecular rotors through design of organic linkers within porous MOF materials.

14.
Molecules ; 25(11)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481752

RESUMEN

The emergence of the hydrogen economy requires development in the storage, generation and sensing of hydrogen. The indium selenide ( γ -InSe) van der Waals (vdW) crystal shows promise for technologies in all three of these areas. For these applications to be realised, the fundamental interactions of InSe with hydrogen must be understood. Here, we present a comprehensive experimental and theoretical study on the interaction of γ -InSe with hydrogen. It is shown that hydrogenation of γ -InSe by a Kaufman ion source results in a marked quenching of the room temperature photoluminescence signal and a modification of the vibrational modes of γ -InSe, which are modelled by density functional theory simulations. Our experimental and theoretical studies indicate that hydrogen is incorporated into the crystal preferentially in its atomic form. This behaviour is qualitatively different from that observed in other vdW crystals, such as transition metal dichalcogenides, where molecular hydrogen is intercalated in the vdW gaps of the crystal, leading to the formation of "bubbles" for hydrogen storage.


Asunto(s)
Hidrógeno/química , Enlace de Hidrógeno , Indio/química , Microscopía Óptica no Lineal , Teoría Cuántica , Termodinámica
15.
J Chem Phys ; 151(7): 074701, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438696

RESUMEN

N 1s Resonant Inelastic X-ray Scattering (RIXS) was used to probe the molecular electronic structure of the ruthenium photosensitizer complex cis-bis(isothiocyanato) bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II), known as "N3." In order to interpret these data, crystalline powder samples of the bipyridine-dicarboxylic acid ligand ("bi-isonicotinic acid") and the single ring analog "isonicotinic acid" were studied separately using the same method. Clear evidence for intermolecular hydrogen bonding is observed for each of these crystalline powders, along with clear vibronic coupling features. For bi-isonicotinic acid, these results are compared to those of a physisorbed multilayer, where no hydrogen bonding is observed. The RIXS of the "N3" dye, again prepared as a bulk powder sample, is interpreted in terms of the orbital contributions of the bi-isonicotinic acid and thiocyanate ligands by considering the two different nitrogen species. This allows direct comparison with the isolated ligand molecules where we highlight the impact of the central Ru atom on the electronic structure of the ligand. Further interpretation is provided through complementary resonant photoemission spectroscopy and density functional theory calculations. This combination of techniques allows us to confirm the localization and relative coupling of the frontier orbitals and associated vibrational losses.

16.
Acc Chem Res ; 50(8): 1797-1807, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28696097

RESUMEN

The main objective of this Account is to assess the challenges of transmission electron microscopy (TEM) of molecules, based on over 15 years of our work in this field, and to outline the opportunities in studying chemical reactions under the electron beam (e-beam). During TEM imaging of an individual molecule adsorbed on an atomically thin substrate, such as graphene or a carbon nanotube, the e-beam transfers kinetic energy to atoms of the molecule, displacing them from equilibrium positions. Impact of the e-beam triggers bond dissociation and various chemical reactions which can be imaged concurrently with their activation by the e-beam and can be presented as stop-frame movies. This experimental approach, which we term ChemTEM, harnesses energy transferred from the e-beam to the molecule via direct interactions with the atomic nuclei, enabling accurate predictions of bond dissociation events and control of the type and rate of chemical reactions. Elemental composition and structure of the reactant molecules as well as the operating conditions of TEM (particularly the energy of the e-beam) determine the product formed in ChemTEM processes, while the e-beam dose rate controls the reaction rate. Because the e-beam of TEM acts simultaneously as a source of energy for the reaction and as an imaging tool monitoring the same reaction, ChemTEM reveals atomic-level chemical information, such as pathways of reactions imaged for individual molecules, step-by-step and in real time; structures of illusive reaction intermediates; and direct comparison of catalytic activity of different transition metals filmed with atomic resolution. Chemical transformations in ChemTEM often lead to previously unforeseen products, demonstrating the potential of this method to become not only an analytical tool for studying reactions, but also a powerful instrument for discovery of materials that can be synthesized on preparative scale.

17.
Soft Matter ; 14(26): 5480-5487, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29926874

RESUMEN

The problem of electrostatic interactions between colloidal particles in an electrolyte solution has been solved within the Debye-Hückel approximation using the boundary condition of constant potential. The model has been validated in two independent ways - by considering the limiting cases obtained from DLVO theory and comparison with the available experimental data. The presented methodology provides the final part of a complete theory of pairwise electrostatic interactions between spherical colloidal particles; one that embraces all possible chemical scenarios within the boundary conditions of constant potential and constant charge.

18.
Inorg Chem ; 57(9): 5074-5082, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29683657

RESUMEN

The complex [Zn2(tdc)2dabco] (H2tdc = thiophene-2,5-dicarboxylic acid; dabco = 1,4-diazabicyclooctane) shows a remarkable increase in carbon dioxide (CO2) uptake and CO2/dinitrogen (N2) selectivity compared to the nonthiophene analogue [Zn2(bdc)2dabco] (H2bdc = benzene-1,4-dicarboxylic acid; terephthalic acid). CO2 adsorption at 1 bar for [Zn2(tdc)2dabco] is 67.4 cm3·g-1 (13.2 wt %) at 298 K and 153 cm3·g-1 (30.0 wt %) at 273 K. For [Zn2(bdc)2dabco], the equivalent values are 46 cm3·g-1 (9.0 wt %) and 122 cm3·g-1 (23.9 wt %), respectively. The isosteric heat of adsorption for CO2 in [Zn2(tdc)2dabco] at zero coverage is low (23.65 kJ·mol-1), ensuring facile regeneration of the porous material. Enhancement by the thiophene group on the separation of CO2/N2 gas mixtures has been confirmed by both ideal adsorbate solution theory calculations and dynamic breakthrough experiments. The preferred binding sites of adsorbed CO2 in [Zn2(tdc)2dabco] have been unambiguously determined by in situ single-crystal diffraction studies on CO2-loaded [Zn2(tdc)2dabco], coupled with quantum-chemical calculations. These studies unveil the role of the thiophene moieties in the specific CO2 binding via an induced dipole interaction between CO2 and the sulfur center, confirming that an enhanced CO2 capacity in [Zn2(tdc)2dabco] is achieved without the presence of open metal sites. The experimental data and theoretical insight suggest a viable strategy for improvement of the adsorption properties of already known materials through the incorporation of sulfur-based heterocycles within their porous structures.

19.
Philos Trans A Math Phys Eng Sci ; 376(2115)2018 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-29431686

RESUMEN

Two experimental studies relating to electrostatic self-assembly have been the subject of dynamic computer simulations, where the consequences of changing the charge and the dielectric constant of the materials concerned have been explored. One series of calculations relates to experiments on the assembly of polymer particles that have been subjected to tribocharging and the simulations successfully reproduce many of the observed patterns of behaviour. A second study explores events observed following collisions between single particles and small clusters composed of charged particles derived from a metal oxide composite. As before, observations recorded during the course of the experiments are reproduced by the calculations. One study in particular reveals how particle polarizability can influence the assembly process.This article is part of the theme issue 'Modern theoretical chemistry'.

20.
Phys Chem Chem Phys ; 20(36): 23616-23624, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30191246

RESUMEN

Tuneable pore sizes, ordered crystal structures, and large surface areas are some of the main attractive features of metal-organic frameworks (MOFs). To fully understand the structure-property relationships of these materials, accurate characterisation of their structural features is essential. The surface areas of MOFs are routinely estimated from the physical adsorption of gases. By applying the Brunauer, Emmett & Teller (BET) theory to an adsorption isotherm, the surface area is calculated from the amount of gas that forms a monolayer on the pore surface. While this technique is used ubiquitously within the porous solid community, its accuracy can be greatly affected by pore-filling contamination. This process causes an overestimation of the BET surface area from the overlap of surface and pore-filling adsorption as molecules that are not in contact with the surface are erroneously included into the surface area calculation. Experimentally, it is rather challenging to examine the effects of pore-filling contamination, which typically rely on accurate atomistic simulations to provide insight. In this work, we employ grand canonical Monte Carlo simulations and other theoretical approaches to assess the impact of pore-filling contamination on MOF surface areas. With a focus on the rht and nbo topologies, we show how experimental studies that suggest MOF surface areas can be increased by replacing phenyl rings for alkynes are largely influenced by the pore-filling contamination effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA