Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 589(7840): 125-130, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32906143

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic1. To understand the pathogenicity and antigenic potential of SARS-CoV-2 and to develop therapeutic tools, it is essential to profile the full repertoire of its expressed proteins. The current map of SARS-CoV-2 coding capacity is based on computational predictions and relies on homology with other coronaviruses. As the protein complement varies among coronaviruses, especially in regard to the variety of accessory proteins, it is crucial to characterize the specific range of SARS-CoV-2 proteins in an unbiased and open-ended manner. Here, using a suite of ribosome-profiling techniques2-4, we present a high-resolution map of coding regions in the SARS-CoV-2 genome, which enables us to accurately quantify the expression of canonical viral open reading frames (ORFs) and to identify 23 unannotated viral ORFs. These ORFs include upstream ORFs that are likely to have a regulatory role, several in-frame internal ORFs within existing ORFs, resulting in N-terminally truncated products, as well as internal out-of-frame ORFs, which generate novel polypeptides. We further show that viral mRNAs are not translated more efficiently than host mRNAs; instead, virus translation dominates host translation because of the high levels of viral transcripts. Our work provides a resource that will form the basis of future functional studies.


Asunto(s)
Perfilación de la Expresión Génica , Genoma Viral/genética , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas , SARS-CoV-2/genética , Proteínas Virales/biosíntesis , Proteínas Virales/genética , Animales , Línea Celular , Humanos , Anotación de Secuencia Molecular , Péptidos/genética , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Ribosomas/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Proteínas Virales/metabolismo
2.
J Infect Dis ; 225(8): 1367-1376, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-32880628

RESUMEN

BACKGROUND: The largest West African monkeypox outbreak began September 2017, in Nigeria. Four individuals traveling from Nigeria to the United Kingdom (n = 2), Israel (n = 1), and Singapore (n = 1) became the first human monkeypox cases exported from Africa, and a related nosocomial transmission event in the United Kingdom became the first confirmed human-to-human monkeypox transmission event outside of Africa. METHODS: Epidemiological and molecular data for exported and Nigerian cases were analyzed jointly to better understand the exportations in the temporal and geographic context of the outbreak. RESULTS: Isolates from all travelers and a Bayelsa case shared a most recent common ancestor and traveled to Bayelsa, Delta, or Rivers states. Genetic variation for this cluster was lower than would be expected from a random sampling of genomes from this outbreak, but data did not support direct links between travelers. CONCLUSIONS: Monophyly of exportation cases and the Bayelsa sample, along with the intermediate levels of genetic variation, suggest a small pool of related isolates is the likely source for the exported infections. This may be the result of the level of genetic variation present in monkeypox isolates circulating within the contiguous region of Bayelsa, Delta, and Rivers states, or another more restricted, yet unidentified source pool.


Asunto(s)
Monkeypox virus , Mpox , Brotes de Enfermedades , Humanos , Mpox/epidemiología , Monkeypox virus/genética , Nigeria/epidemiología , Reino Unido
3.
Arch Virol ; 167(4): 1041-1049, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35192015

RESUMEN

SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, emerged as the cause of a global crisis in 2019. Currently, the main method for identification of SARS-CoV-2 is a reverse transcription (RT)-PCR assay designed to detect viral RNA in oropharyngeal (OP) or nasopharyngeal (NP) samples. While the PCR assay is considered highly specific and sensitive, this method cannot determine the infectivity of the sample, which may assist in evaluation of virus transmissibility from patients and breaking transmission chains. Thus, cell-culture-based approaches such as cytopathic effect (CPE) assays are routinely employed for the identification of infectious viruses in NP/OP samples. Despite their high sensitivity, CPE assays take several days and require additional diagnostic tests in order to verify the identity of the pathogen. We have therefore developed a rapid immunofluorescence assay (IFA) for the specific detection of SARS-CoV-2 in NP/OP samples following cell culture infection. Initially, IFA was carried out on Vero E6 cultures infected with SARS-CoV-2 at defined concentrations, and infection was monitored at different time points. This test was able to yield positive signals in cultures infected with 10 pfu/ml at 12 hours postinfection (PI). Increasing the incubation time to 24 hours reduced the detectable infective dose to 1 pfu/ml. These IFA signals occur before the development of CPE. When compared to the CPE test, IFA has the advantages of specificity, rapid detection, and sensitivity, as demonstrated in this work.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Técnica del Anticuerpo Fluorescente , Humanos , Nasofaringe , Pandemias , ARN Viral/genética , Sensibilidad y Especificidad
4.
Arch Toxicol ; 96(8): 2329-2339, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35577986

RESUMEN

BriLife®, a vector-based vaccine that utilizes the recombinant vesicular stomatitis virus (VSV) platform to express and present the spike antigen of SARS-CoV-2, is undergoing testing in a phase 2 clinical trial in Israel. A nonclinical repeated-dose (GLP) toxicity study in New Zealand white rabbits was performed to evaluate the potential toxicity, local tolerance, immunogenicity and biodistribution of the vaccine. rVSV-ΔG-SARS-CoV-2-S (or vehicle) was administered intramuscularly to two groups of animals (106, 107 PFU/animal, n = 10/sex/group) on three occasions, at 2-week intervals, followed by a 3-week recovery period. Systemic clinical signs, local reactions, body weight, body temperature, food consumption, ophthalmology, urinalysis, clinical pathology, C-reactive protein, viremia and antibody levels were monitored. Gross pathology was performed, followed by organs/tissues collection for biodistribution and histopathological evaluation. Treatment-related changes were restricted to multifocal minimal myofiber necrosis at the injection sites, and increased lymphocytic cellularity in the iliac and mesenteric lymph nodes and in the spleen. These changes were considered related to the inflammatory reaction elicited, and correlated with a trend for recovery. Detection of rVSV-ΔG-SARS-CoV-2-S vaccine RNA was noted in the regional iliac lymph node in animals assigned to the high-dose group, at both termination time points. A significant increase in binding and neutralizing antibody titers was observed following vaccination at both vaccine doses. In view of the findings, it was concluded that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe. These results supported the initiation of clinical trials.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Conejos , SARS-CoV-2 , Distribución Tisular
5.
Arch Toxicol ; 96(3): 859-875, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032184

RESUMEN

rVSV-ΔG-SARS-CoV-2-S is a clinical stage (Phase 2) replication competent recombinant vaccine against SARS-CoV-2. To evaluate the safety profile of the vaccine, a series of non-clinical safety, immunogenicity and efficacy studies were conducted in four animal species, using multiple doses (up to 108 Plaque Forming Units/animal) and dosing regimens. There were no treatment-related mortalities or any noticeable clinical signs in any of the studies. Compared to unvaccinated controls, hematology and biochemistry parameters were unremarkable and no adverse histopathological findings. There was no detectable viral shedding in urine, nor viral RNA detected in whole blood or serum samples seven days post vaccination. The rVSV-ΔG-SARS-CoV-2-S vaccination gave rise to neutralizing antibodies, cellular immune responses, and increased lymphocytic cellularity in the spleen germinal centers and regional lymph nodes. No evidence for neurovirulence was found in C57BL/6 immune competent mice or in highly sensitive type I interferon knock-out mice. Vaccine virus replication and distribution in K18-human Angiotensin-converting enzyme 2-transgenic mice showed a gradual clearance from the vaccination site with no vaccine virus recovered from the lungs. The nonclinical data suggest that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe and immunogenic. These results supported the initiation of clinical trials, currently in Phase 2.


Asunto(s)
Vacunas contra la COVID-19/toxicidad , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , Cricetinae , Femenino , Glicoproteínas de Membrana/genética , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Conejos , Porcinos , Vacunación , Vacunas Sintéticas/toxicidad , Proteínas del Envoltorio Viral/genética
6.
Euro Surveill ; 27(35)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36052723

RESUMEN

The current monkeypox virus global spread and lack of data regarding clinical specimens' infectivity call for examining virus infectivity, and whether this correlates with results from PCR, the available diagnostic tool. We show strong correlation between viral DNA amount in clinical specimens and virus infectivity toward BSC-1 cell line. Moreover, we define a PCR threshold value (Cq ≥ 35, ≤ 4,300 DNA copies/mL), corresponding to negative viral cultures, which may assist risk-assessment and decision-making regarding protective-measures and guidelines for patients with monkeypox.


Asunto(s)
Mpox , ADN Viral/análisis , ADN Viral/genética , Humanos , Israel/epidemiología , Mpox/diagnóstico , Mpox/epidemiología , Monkeypox virus/genética , Reacción en Cadena de la Polimerasa/métodos
7.
J Infect Dis ; 224(4): 616-619, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34398244

RESUMEN

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may influence the effectiveness of existing laboratory diagnostics. In the current study we determined whether the British (20I/501Y.V1) and South African (20H/501Y.V2) SARS-CoV-2 variants of concern are detected with an in-house S1-based antigen detection assay, analyzing spiked pools of quantitative reverse-transcription polymerase chain reaction-negative nasopharyngeal swab specimens. The assay, combining 4 monoclonal antibodies, allowed sensitive detection of both the wild type and the variants of concern, despite accumulation of several mutations in the variants' S1 region-results suggesting that this combination, targeting distinct epitopes, enables both specificity and the universality.


Asunto(s)
COVID-19/diagnóstico , COVID-19/virología , SARS-CoV-2/clasificación , Anticuerpos Monoclonales/inmunología , Antígenos Virales/inmunología , Antígenos Virales/aislamiento & purificación , COVID-19/inmunología , Humanos , Mutación , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/aislamiento & purificación , Carga Viral
8.
Emerg Infect Dis ; 27(8): 2117-2126, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34286684

RESUMEN

In a multicenter, nationwide, retrospective study of patients hospitalized with spotted fever group rickettsiosis in Israel during 2010-2019, we identified 42 cases, of which 36 were autochthonous. The most prevalent species was the Rickettsia conorii Israeli tick typhus strain (n = 33, 79%); infection with this species necessitated intensive care for 52% of patients and was associated with a 30% fatality rate. A history of tick bite was rare, found for only 5% of patients; eschar was found in 12%; and leukocytosis was more common than leukopenia. Most (72%) patients resided along the Mediterranean shoreline. For 3 patients, a new Rickettsia variant was identified and had been acquired in eastern, mountainous parts of Israel. One patient had prolonged fever before admission and clinical signs resembling tickborne lymphadenopathy. Our findings suggest that a broad range of Rickettsia species cause spotted fever group rickettsiosis in Israel.


Asunto(s)
Rickettsia conorii , Rickettsia , Rickettsiosis Exantemáticas , Humanos , Israel/epidemiología , Estudios Retrospectivos , Rickettsia/genética , Rickettsiosis Exantemáticas/diagnóstico , Rickettsiosis Exantemáticas/epidemiología
9.
Anal Chem ; 93(39): 13126-13133, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34551252

RESUMEN

This study presents the development of a new correlative workflow to bridge the gap between electron microscopy imaging and genetic analysis of viruses. The workflow enables the assignment of genetic information to a specific biological entity by harnessing the nanodissection capability of focused ion beam (FIB). This correlative workflow is based on scanning transmission electron microscopy (STEM) and FIB followed by a polymerase chain reaction (PCR). For this purpose, we studied the tomato brown rugose fruit virus (ToBRFV) and the adenovirus that have significant impacts on plant integrity and human health, respectively. STEM imaging was used for the identification and localization of virus particles on a transmission electron microscopy (TEM) grid followed by FIB milling of the desired region of interest. The final-milled product was subjected to genetic analysis by the PCR. The results prove that the FIB-milling process maintains the integrity of the genetic material as confirmed by the PCR. We demonstrate the identification of RNA and DNA viruses extracted from a few micrometers of an FIB-milled TEM grid. This workflow enables the genetic analysis of specifically imaged viral particles directly from heterogeneous clinical samples. In addition to viral diagnostics, the ability to isolate and to genetically identify specific submicrometer structures may prove valuable in additional fields, including subcellular organelle and granule research.


Asunto(s)
Virión , Humanos , Microscopía Electrónica de Transmisión de Rastreo , Virión/genética
10.
Emerg Infect Dis ; 25(5): 980-983, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30848724

RESUMEN

We report a case of monkeypox in a man who returned from Nigeria to Israel in 2018. Virus was detected in pustule swabs by transmission electron microscopy and PCR and confirmed by immunofluorescence assay, tissue culture, and ELISA. The West Africa monkeypox outbreak calls for increased awareness by public health authorities worldwide.


Asunto(s)
Enfermedades Transmisibles Importadas/diagnóstico , Enfermedades Transmisibles Importadas/epidemiología , Brotes de Enfermedades , Monkeypox virus , Mpox/diagnóstico , Mpox/epidemiología , Animales , Biopsia , Chlorocebus aethiops , Enfermedades Transmisibles Importadas/historia , Enfermedades Transmisibles Importadas/virología , Historia del Siglo XXI , Humanos , Israel/epidemiología , Mpox/historia , Mpox/virología , Piel/patología , Piel/virología , Células Vero
11.
Exp Eye Res ; 184: 201-212, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31022400

RESUMEN

Exposure to sulfur mustard (SM) may result in severe ocular injuries. While some of the eyes show a clinical resolution of the injury (defined as clinically non-impaired), part of the eyes develop irreversible late ocular pathologies (defined as clinically impaired) that may lead to corneal blindness. Understanding the pathological mechanisms underlying the development of the late pathology may lead to improved treatment options. Therefore, this study aimed to investigate the mRNA expression profiles of corneas from clinically impaired, clinically non-impaired and naïve eyes. Rabbit eyes were exposed to SM vapor and a clinical follow-up was carried out up to 4 weeks using a slit lamp microscope. At this time point, corneal tissues from clinically impaired, clinically non-impaired and naïve eyes were processed for RNA sequencing (RNA-seq) and differential expression analyses. The differential expression profiles were further subjected to pathway enrichment analysis using Ingenuity Pathway Analysis (IPA). Real-time PCR was used for RNA-seq validation. The late pathology developed in 54%-80% of the eyes following ocular exposure to SM, clinically manifested by inflammation, corneal opacity and neovascularization. RNA-seq results showed significant differences in mRNA levels of hundreds of genes between clinically impaired, clinically non-impaired and naïve corneas. Pathway enrichment analysis showed common pathways that were activated in all of the exposed eyes, such as Th1 and Th2 activation pathway, in addition to pathways that were activated only in the clinically impaired eyes compared to the clinically non-impaired eyes, such as IL-6 and ERK5 signaling. Corneal mRNA expression profiles for the clinically impaired, clinically non-impaired and naïve eyes generated a comprehensive database that revealed new factors and pathways, which for the first time were shown to be involved in SM-induced late pathology. Our data may contribute to the research on both the pathological mechanisms that are involved in the development of the late pathology and the protective pathways that are activated in the clinically non-impaired eyes and may point out towards novel therapeutic strategies for this severe ocular injury.


Asunto(s)
Sustancias para la Guerra Química/efectos adversos , Neovascularización de la Córnea , Opacidad de la Córnea , Gas Mostaza/efectos adversos , ARN Mensajero/metabolismo , Animales , Córnea , Neovascularización de la Córnea/inducido químicamente , Neovascularización de la Córnea/metabolismo , Opacidad de la Córnea/inducido químicamente , Opacidad de la Córnea/metabolismo , Modelos Animales de Enfermedad , Conejos
12.
Clin Infect Dis ; 61(12): e58-61, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26420800

RESUMEN

Botulinum toxin was detected in patient serum using Endopeptidase-mass-spectrometry assay, although all conventional tests provided negative results. Antitoxin was administered, resulting in patient improvement. Implementing this highly sensitive and rapid assay will improve preparedness for foodborne botulism and deliberate exposure.


Asunto(s)
Botulismo/diagnóstico , Endopeptidasas/sangre , Espectrometría de Masas/métodos , Antitoxinas/administración & dosificación , Botulismo/terapia , Diagnóstico Precoz , Humanos , Lactante , Masculino , Suero/química , Factores de Tiempo , Resultado del Tratamiento
13.
New Microbes New Infect ; 59: 101242, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38577384

RESUMEN

The diagnosis of Q fever is challenging due to nonspecific symptoms and negative standard blood culture results. Serological testing through immunofluorescence assay (IFA) is the most commonly used method for diagnosing this disease. Polymerase chain reaction (PCR) tests can also be used to detect bacterial DNA if taken at an appropriate time. Once the presence of bacteria is confirmed in a sample, an enrichment step is required before characterizing it through sequencing. Cultivating C. burnetii is challenging as it can only be isolated by inoculation into cell culture, embryonated eggs, or animals. In this article, we describe the isolation of C. burnetii from a valve specimen in Vero cells. We conducted genome sequencing and taxonomy profiling of this isolate and were able to determine its taxonomic affiliation. Furthermore, Multispacer sequence typing (MST) analysis suggests that the infection originated from a local strain of C. burnetii found around northern Israel and Lebanon. This novel strain belongs to a previously described genotype MST6, harboring the QpRS plasmid, never reported in Israel.

14.
BMC Genom Data ; 25(1): 47, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783201

RESUMEN

OBJECTIVE: Burkholderia pseudomallei, the etiological cause of melioidosis, is a soil saprophyte endemic in South-East Asia, where it constitutes a public health concern of high-priority. Melioidosis cases are sporadically identified in nonendemic areas, usually associated with travelers or import of goods from endemic regions. Due to extensive intercontinental traveling and the anticipated climate change-associated alterations of the soil bacterial flora, there is an increasing concern for inadvertent establishment of novel endemic areas, which may expand the global burden of melioidosis. Rapid diagnosis, isolation and characterization of B. pseudomallei isolates is therefore of utmost importance particularly in non-endemic locations. DATA DESCRIPTION: We report the genome sequences of two novel clinical isolates (MWH2021 and MST2022) of B. pseudomallei identified in distinct acute cases of melioidosis diagnosed in two individuals arriving to Israel from India and Thailand, respectively. The data includes preliminary genetic analysis of the genomes determining their phylogenetic classification in rapport to the genomes of 131 B. pseudomallei strains documented in the NCBI database. Inspection of the genomic data revealed the presence or absence of loci encoding for several documented virulence determinants involved in the molecular pathogenesis of melioidosis. Virulence analysis in murine models of acute or chronic melioidosis established that both strains belong to the highly virulent class of B. pseudomalleii.


Asunto(s)
Burkholderia pseudomallei , Genoma Bacteriano , Melioidosis , Filogenia , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/aislamiento & purificación , Burkholderia pseudomallei/patogenicidad , Melioidosis/microbiología , Melioidosis/epidemiología , Tailandia/epidemiología , Humanos , Genoma Bacteriano/genética , India , Animales , Israel/epidemiología , Virulencia/genética , Ratones , Secuenciación Completa del Genoma
15.
Front Bioeng Biotechnol ; 12: 1333548, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449674

RESUMEN

The COVID-19 pandemic has led to high global demand for vaccines to safeguard public health. To that end, our institute has developed a recombinant viral vector vaccine utilizing a modified vesicular stomatitis virus (VSV) construct, wherein the G protein of VSV is replaced with the spike protein of SARS-CoV-2 (rVSV-ΔG-spike). Previous studies have demonstrated the production of a VSV-based vaccine in Vero cells adsorbed on Cytodex 1 microcarriers or in suspension. However, the titers were limited by both the carrier surface area and shear forces. Here, we describe the development of a bioprocess for rVSV-ΔG-spike production in serum-free Vero cells using porous Fibra-Cel® macrocarriers in fixed-bed BioBLU®320 5p bioreactors, leading to high-end titers. We identified core factors that significantly improved virus production, such as the kinetics of virus production, the use of macrospargers for oxygen supply, and medium replenishment. Implementing these parameters, among others, in a series of GMP production processes improved the titer yields by at least two orders of magnitude (2e9 PFU/mL) over previously reported values. The developed process was highly effective, repeatable, and robust, creating potent and genetically stable vaccine viruses and introducing new opportunities for application in other viral vaccine platforms.

16.
Viruses ; 15(6)2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37376662

RESUMEN

Since the emergence of the original SARS-CoV-2, several variants were described, raising questions as to the ability of recently developed vaccine platforms to induce immunity and provide protection against these variants. Here, we utilized the K18-hACE2 mouse model to show that VSV-ΔG-spike vaccination provides protection against several SARS-CoV-2 variants: alpha, beta, gamma, and delta. We show an overall robust immune response, regardless of variant identity, leading to reduction in viral load in target organs, prevention of morbidity and mortality, as well as prevention of severe brain immune response, which follows infection with various variants. Additionally, we provide a comprehensive comparison of the brain transcriptomic profile in response to infection with different variants of SARS-CoV-2 and show how vaccination prevents these disease manifestations. Taken together, these results highlight the robust VSV-ΔG-spike protective response against diverse SARS-CoV-2 variants, as well as its promising potential against newly arising variants.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Humanos , Ratones , COVID-19/prevención & control , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
17.
Vaccines (Basel) ; 10(4)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35455362

RESUMEN

Longevity of the immune response following viral exposure is an essential aspect of SARS-CoV-2 infection. Mild SARS-CoV-2 infection of K18-hACE2 mice was implemented for evaluating the mounting and longevity of a specific memory immune response. We show that the infection of K18-hACE2 mice induced robust humoral and cellular immunity (systemic and local), which persisted for at least six months. Virus-specific T cells and neutralizing antibody titers decreased over time, yet their levels were sufficient to provide sterile immunity against lethal rechallenge six months post-primary infection. The study substantiates the role of naturally induced immunity against SARS-CoV-2 infection for preventing recurring morbidity.

18.
Front Physiol ; 13: 853317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350687

RESUMEN

The past decade has witnessed tremendous endeavors to deliver novel preclinical in vitro lung models for pulmonary research endpoints, including foremost with the advent of organ- and lung-on-chips. With growing interest in aerosol transmission and infection of respiratory viruses within a host, most notably the SARS-CoV-2 virus amidst the global COVID-19 pandemic, the importance of crosstalk between the different lung regions (i.e., extra-thoracic, conductive and respiratory), with distinct cellular makeups and physiology, are acknowledged to play an important role in the progression of the disease from the initial onset of infection. In the present Methods article, we designed and fabricated to the best of our knowledge the first multi-compartment human airway-on-chip platform to serve as a preclinical in vitro benchmark underlining regional lung crosstalk for viral infection pathways. Combining microfabrication and 3D printing techniques, our platform mimics key elements of the respiratory system spanning (i) nasal passages that serve as the alleged origin of infections, (ii) the mid-bronchial airway region and (iii) the deep acinar region, distinct with alveolated airways. Crosstalk between the three components was exemplified in various assays. First, viral-load (including SARS-CoV-2) injected into the apical partition of the nasal compartment was detected in distal bronchial and acinar components upon applying physiological airflow across the connected compartment models. Secondly, nebulized viral-like dsRNA, poly I:C aerosols were administered to the nasal apical compartment, transmitted to downstream compartments via respiratory airflows and leading to an elevation in inflammatory cytokine levels secreted by distinct epithelial cells in each respective compartment. Overall, our assays establish an in vitro methodology that supports the hypothesis for viral-laden airflow mediated transmission through the respiratory system cellular landscape. With a keen eye for broader end user applications, we share detailed methodologies for fabricating, assembling, calibrating, and using our multi-compartment platform, including open-source fabrication files. Our platform serves as an early proof-of-concept that can be readily designed and adapted to specific preclinical pulmonary research endpoints.

19.
Int J Infect Dis ; 118: 211-213, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35257907

RESUMEN

SARS-CoV-2 Omicron strain emergence raised concerns that its enhanced infectivity is partly due to altered spread/contamination modalities. We therefore sampled high-contact surfaces and air in close proximity to patients who were verified as infected with the Omicron strain, using identical protocols applied to sample patients positive to the original or Alpha strains. Cumulatively, for all 3 strains, viral RNA was detected in 90 of 168 surfaces and 6 of 49 air samples (mean cycle threshold [Ct]=35.2±2.5). No infective virus was identified. No significant differences in prevalence were found between strains.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , ARN Viral/genética , Manejo de Especímenes
20.
Viruses ; 14(8)2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-36016439

RESUMEN

As of July 2022, more than 16,000 laboratory-confirmed monkeypox (MPX) cases have been reported worldwide. Until recently, MPX was a rare viral disease seldom detected outside Africa. MPX virus (MPXV) belongs to the Orthopoxvirus (OPV) genus and is a genetically close relative of the Variola virus (the causative agent of smallpox). Following the eradication of smallpox, there was a significant decrease in smallpox-related morbidity and the population's immunity to other OPV-related diseases such as MPX. In parallel, there was a need for differential diagnosis between the different OPVs' clinical manifestations and diseases with similar symptoms (i.e., chickenpox, herpes simplex). The current study aimed to provide a rapid genetic-based diagnostic tool for accurate and specific identification of MPXV and additional related vesicle-forming pathogens. We initially assembled a list of 14 relevant viral pathogens, causing infectious diseases associated with vesicles, prone to be misdiagnosed as MPX. Next, we developed an approach that we termed rapid amplicon nanopore sequencing (RANS). The RANS approach uses diagnostic regions that harbor high homology in their boundaries and internal diagnostic SNPs that, when sequenced, aid the discrimination of each pathogen within a group. During a multiplex PCR amplification, a dA tail and a 5'-phosphonate were simultaneously added, thus making the PCR product ligation ready for nanopore sequencing. Following rapid sequencing (a few minutes), the reads were compared to a reference database and the nearest strain was identified. We first tested our approach using samples of known viruses cultured in cell lines. All the samples were identified correctly and swiftly. Next, we examined a variety of clinical samples from the 2022 MPX outbreak. Our RANS approach identified correctly all the PCR-positive MPXV samples and mapped them to strains that were sequenced during the 2022 outbreak. For the subset of samples that were negative for MPXV by PCR, we obtained definite results, identifying other vesicle-forming viruses: Human herpesvirus 3, Human herpesvirus 2, and Molluscum contagiosum virus. This work was a proof-of-concept study, demonstrating the potential of the RANS approach for rapid and discriminatory identification of a panel of closely related pathogens. The simplicity and affordability of our approach makes it straightforward to implement in any genetics lab. Moreover, other differential diagnostics panels might benefit from the implementation of the RANS approach into their diagnostics pipelines.


Asunto(s)
Mpox , Secuenciación de Nanoporos , Orthopoxvirus , Viruela , Virus de la Viruela , Diagnóstico Diferencial , Humanos , Mpox/epidemiología , Monkeypox virus/genética , Viruela/diagnóstico , Virus de la Viruela/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA