Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Cell Dev Biol ; 37: 43-63, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34314592

RESUMEN

The centrosome is a main orchestrator of the animal cellular microtubule cytoskeleton. Dissecting its structure and assembly mechanisms has been a goal of cell biologists for over a century. In the last two decades, a good understanding of the molecular constituents of centrosomes has been achieved. Moreover, recent breakthroughs in electron and light microscopy techniques have enabled the inspection of the centrosome and the mapping of its components with unprecedented detail. However, we now need a profound and dynamic understanding of how these constituents interact in space and time. Here, we review the latest findings on the structural and molecular architecture of the centrosome and how its biogenesis is regulated, highlighting how biophysical techniques and principles as well as quantitative modeling are changing our understanding of this enigmatic cellular organelle.


Asunto(s)
Centrosoma , Orgánulos , Animales
2.
EMBO Rep ; 25(1): 102-127, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200359

RESUMEN

Centrioles are part of centrosomes and cilia, which are microtubule organising centres (MTOC) with diverse functions. Despite their stability, centrioles can disappear during differentiation, such as in oocytes, but little is known about the regulation of their structural integrity. Our previous research revealed that the pericentriolar material (PCM) that surrounds centrioles and its recruiter, Polo kinase, are downregulated in oogenesis and sufficient for maintaining both centrosome structural integrity and MTOC activity. We now show that the expression of specific components of the centriole cartwheel and wall, including ANA1/CEP295, is essential for maintaining centrosome integrity. We find that Polo kinase requires ANA1 to promote centriole stability in cultured cells and eggs. In addition, ANA1 expression prevents the loss of centrioles observed upon PCM-downregulation. However, the centrioles maintained by overexpressing and tethering ANA1 are inactive, unlike the MTOCs observed upon tethering Polo kinase. These findings demonstrate that several centriole components are needed to maintain centrosome structure. Our study also highlights that centrioles are more dynamic than previously believed, with their structural stability relying on the continuous expression of multiple components.


Asunto(s)
Centriolos , Centrosoma , Proteínas de Drosophila , Proteínas Asociadas a Microtúbulos , Centriolos/metabolismo , Centrosoma/metabolismo , Oocitos/metabolismo , Oogénesis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Drosophila melanogaster , Proteínas de Drosophila/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Humanos
3.
Nat Rev Mol Cell Biol ; 15(7): 433-52, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24954208

RESUMEN

Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Modelos Moleculares , Estabilidad Proteica , Estructura Secundaria de Proteína , Quinasa Tipo Polo 1
4.
EMBO Rep ; 23(3): e54160, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34957672

RESUMEN

The actin motor protein myosin VI is a multivalent protein with diverse functions. Here, we identified and characterised a myosin VI ubiquitous interactor, the oral-facial-digital syndrome 1 (OFD1) protein, whose mutations cause malformations of the face, oral cavity, digits and polycystic kidney disease. We found that myosin VI regulates the localisation of OFD1 at the centrioles and, as a consequence, the recruitment of the distal appendage protein Cep164. Myosin VI depletion in non-tumoural cell lines causes an aberrant localisation of OFD1 along the centriolar walls, which is due to a reduction in the OFD1 mobile fraction. Finally, loss of myosin VI triggers a severe defect in ciliogenesis that could be, at least partially, ascribed to an impairment in the autophagic removal of OFD1 from satellites. Altogether, our results highlight an unprecedent layer of regulation of OFD1 and a pivotal role of myosin VI in coordinating the formation of the distal appendages and primary cilium with important implications for the genetic disorders known as ciliopathies.


Asunto(s)
Ciliopatías , Proteínas Asociadas a Microtúbulos , Centriolos/metabolismo , Cilios/metabolismo , Ciliopatías/genética , Ciliopatías/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Proteínas/metabolismo
5.
PLoS Comput Biol ; 17(5): e1008765, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33979341

RESUMEN

The presence of extra centrioles, termed centrosome amplification, is a hallmark of cancer. The distribution of centriole numbers within a cancer cell population appears to be at an equilibrium maintained by centriole overproduction and selection, reminiscent of mutation-selection balance. It is unknown to date if the interaction between centriole overproduction and selection can quantitatively explain the intra- and inter-population heterogeneity in centriole numbers. Here, we define mutation-selection-like models and employ a model selection approach to infer patterns of centriole overproduction and selection in a diverse panel of human cell lines. Surprisingly, we infer strong and uniform selection against any number of extra centrioles in most cell lines. Finally we assess the accuracy and precision of our inference method and find that it increases non-linearly as a function of the number of sampled cells. We discuss the biological implications of our results and how our methodology can inform future experiments.


Asunto(s)
Centrosoma/patología , Modelos Biológicos , Evolución Biológica , Línea Celular , Proliferación Celular , Centriolos/genética , Centriolos/patología , Biología Computacional , Humanos , Conceptos Matemáticos , Mutación , Neoplasias/genética , Neoplasias/patología , Dinámicas no Lineales , Selección Genética
6.
PLoS Comput Biol ; 17(5): e1008359, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33970906

RESUMEN

How cells control the numbers of subcellular components is a fundamental question in biology. Given that biosynthetic processes are fundamentally stochastic it is utterly puzzling that some structures display no copy number variation within a cell population. Centriole biogenesis, with each centriole being duplicated once and only once per cell cycle, stands out due to its remarkable fidelity. This is a highly controlled process, which depends on low-abundance rate-limiting factors. How can exactly one centriole copy be produced given the variation in the concentration of these key factors? Hitherto, tentative explanations of this control evoked lateral inhibition- or phase separation-like mechanisms emerging from the dynamics of these rate-limiting factors but how strict centriole number is regulated remains unsolved. Here, a novel solution to centriole copy number control is proposed based on the assembly of a centriolar scaffold, the cartwheel. We assume that cartwheel building blocks accumulate around the mother centriole at supercritical concentrations, sufficient to assemble one or more cartwheels. Our key postulate is that once the first cartwheel is formed it continues to elongate by stacking the intermediate building blocks that would otherwise form supernumerary cartwheels. Using stochastic models and simulations, we show that this mechanism may ensure formation of one and only one cartwheel robustly over a wide range of parameter values. By comparison to alternative models, we conclude that the distinctive signatures of this novel mechanism are an increasing assembly time with cartwheel numbers and the translation of stochasticity in building block concentrations into variation in cartwheel numbers or length.


Asunto(s)
Centriolos/metabolismo , Centriolos/ultraestructura , Modelos Biológicos , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Centriolos/química , Biología Computacional , Simulación por Computador , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Cuaternaria de Proteína , Procesos Estocásticos
7.
J Cell Sci ; 132(4)2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30237222

RESUMEN

The centrosome is an important microtubule-organising centre (MTOC) in animal cells. It consists of two barrel-shaped structures, the centrioles, surrounded by the pericentriolar material (PCM), which nucleates microtubules. Centrosomes can form close to an existing structure (canonical duplication) or de novo How centrosomes form de novo is not known. The master driver of centrosome biogenesis, PLK4, is critical for the recruitment of several centriole components. Here, we investigate the beginning of centrosome biogenesis, taking advantage of Xenopus egg extracts, where PLK4 can induce de novo MTOC formation ( Eckerdt et al., 2011; Zitouni et al., 2016). Surprisingly, we observe that in vitro, PLK4 can self-assemble into condensates that recruit α- and ß-tubulins. In Xenopus extracts, PLK4 assemblies additionally recruit STIL, a substrate of PLK4, and the microtubule nucleator γ-tubulin, forming acentriolar MTOCs de novo The assembly of these robust microtubule asters is independent of dynein, similar to what is found for centrosomes. We suggest a new mechanism of action for PLK4, where it forms a self-organising catalytic scaffold that recruits centriole components, PCM factors and α- and ß-tubulins, leading to MTOC formation.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Centriolos/metabolismo , Centrosoma/metabolismo , Dineínas/metabolismo , Huso Acromático/metabolismo , Xenopus laevis/metabolismo
8.
PLoS Comput Biol ; 15(3): e1006832, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30856170

RESUMEN

Centrosome amplification (CA) is a common feature of human tumours and a promising target for cancer therapy. However, CA's pan-cancer prevalence, molecular role in tumourigenesis and therapeutic value in the clinical setting are still largely unexplored. Here, we used a transcriptomic signature (CA20) to characterise the landscape of CA-associated gene expression in 9,721 tumours from The Cancer Genome Atlas (TCGA). CA20 is upregulated in cancer and associated with distinct clinical and molecular features of breast cancer, consistently with our experimental CA quantification in patient samples. Moreover, we show that CA20 upregulation is positively associated with genomic instability, alteration of specific chromosomal arms and C>T mutations, and we propose novel molecular players associated with CA in cancer. Finally, high CA20 is associated with poor prognosis and, by integrating drug sensitivity with drug perturbation profiles in cell lines, we identify candidate compounds for selectively targeting cancer cells exhibiting transcriptomic evidence for CA.


Asunto(s)
Neoplasias de la Mama/genética , Centrosoma , Perfilación de la Expresión Génica , Atlas como Asunto , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Aberraciones Cromosómicas , Femenino , Inestabilidad Genómica , Humanos , Mutación , Pronóstico , Transcriptoma , Resultado del Tratamiento , Regulación hacia Arriba
9.
J Cell Sci ; 130(22): 3789-3800, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29142065

RESUMEN

Centrosomes and cilia are present in organisms from all branches of the eukaryotic tree of life. These structures are composed of microtubules and various other proteins, and are required for a plethora of cell processes such as structuring the cytoskeleton, sensing the environment, and motility. Deregulation of centrosome and cilium components leads to a wide range of diseases, some of which are incompatible with life. Centrosomes and cilia are thought to be very stable and can persist over long periods of time. However, these structures can disappear in certain developmental stages and diseases. Moreover, some centrosome and cilia components are quite dynamic. While a large body of knowledge has been produced regarding the biogenesis of these structures, little is known about how they are maintained. In this Review, we propose the existence of specific centrosome and cilia maintenance programs, which are regulated during development and homeostasis, and when deregulated can lead to disease.


Asunto(s)
Centrosoma/fisiología , Cilios/fisiología , Animales , Centrosoma/ultraestructura , Cilios/ultraestructura , Homeostasis , Humanos , Microtúbulos/metabolismo , Estabilidad Proteica , Regeneración
10.
Cell ; 136(1): 188-188.e1, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19135899
11.
Nature ; 467(7316): 714-8, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20852615

RESUMEN

Centrioles are found in the centrosome core and, as basal bodies, at the base of cilia and flagella. Centriole assembly and duplication is controlled by Polo-like-kinase 4 (Plk4): these processes fail if Plk4 is downregulated and are promoted by Plk4 overexpression. Here we show that the centriolar protein Asterless (Asl; human orthologue CEP152) provides a conserved molecular platform, the amino terminus of which interacts with the cryptic Polo box of Plk4 whereas the carboxy terminus interacts with the centriolar protein Sas-4 (CPAP in humans). Drosophila Asl and human CEP152 are required for the centrosomal loading of Plk4 in Drosophila and CPAP in human cells, respectively. Depletion of Asl or CEP152 caused failure of centrosome duplication; their overexpression led to de novo centriole formation in Drosophila eggs, duplication of free centrosomes in Drosophila embryos, and centrosome amplification in cultured Drosophila and human cells. Overexpression of a Plk4-binding-deficient mutant of Asl prevented centriole duplication in cultured cells and embryos. However, this mutant protein was able to promote microtubule organizing centre (MTOC) formation in both embryos and oocytes. Such MTOCs had pericentriolar material and the centriolar protein Sas-4, but no centrioles at their core. Formation of such acentriolar MTOCs could be phenocopied by overexpression of Sas-4 in oocytes or embryos. Our findings identify independent functions for Asl as a scaffold for Plk4 and Sas-4 that facilitates self-assembly and duplication of the centriole and organization of pericentriolar material.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Centrosoma/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Oocitos/citología , Oocitos/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
12.
Trends Genet ; 27(8): 307-15, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21680046

RESUMEN

Centrioles are microtubule-derived structures that are essential for the formation of centrosomes, cilia and flagella. The centrosome is the major microtubule organiser in animal cells, participating in a variety of processes, from cell polarisation to cell division, whereas cilia and flagella contribute to several mechanisms in eukaryotic cells, from motility to sensing. Although it was suggested more than a century ago that these microtubule-derived structures are involved in human disease, the molecular bases of this association have only recently been discovered. Surprisingly, there is very little overlap between the genes affected in the different diseases, suggesting that there are tissue-specific requirements for these microtubule-derived structures. Knowledge of these requirements and disease mechanisms has opened new avenues for therapeutical strategies. Here, we give an overview of recent developments in this field, focusing on cancer, diseases of brain development and ciliopathies.


Asunto(s)
Centrosoma/fisiología , Cilios/fisiología , Microcefalia/patología , Neoplasias/patología , Aneuploidia , División Celular , Inestabilidad Cromosómica , Humanos , Enfermedades Renales Quísticas/patología , Mutación , Transducción de Señal , Huso Acromático/fisiología
13.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38373798

RESUMEN

Ciliary defects cause several ciliopathies, some of which have late onset, suggesting cilia are actively maintained. Still, we have a poor understanding of the mechanisms underlying their maintenance. Here, we show Drosophila melanogaster IFT88 (DmIFT88/nompB) continues to move along fully formed sensory cilia. We further identify Inactive, a TRPV channel subunit involved in Drosophila hearing and negative-gravitaxis behaviour, and a yet uncharacterised Drosophila Guanylyl Cyclase 2d (DmGucy2d/CG34357) as DmIFT88 cargoes. We also show DmIFT88 binding to the cyclase´s intracellular part, which is evolutionarily conserved and mutated in several degenerative retinal diseases, is important for the ciliary localisation of DmGucy2d. Finally, acute knockdown of both DmIFT88 and DmGucy2d in ciliated neurons of adult flies caused defects in the maintenance of cilium function, impairing hearing and negative-gravitaxis behaviour, but did not significantly affect ciliary ultrastructure. We conclude that the sensory ciliary function underlying hearing in the adult fly requires an active maintenance program which involves DmIFT88 and at least two of its signalling transmembrane cargoes, DmGucy2d and Inactive.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Cilios/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Audición
14.
FEBS Lett ; 598(7): 719-724, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514456

RESUMEN

The diverse range of organizations contributing to the global research ecosystem is believed to enhance the overall quality and resilience of its output. Mid-sized autonomous research institutes, distinct from universities, play a crucial role in this landscape. They often lead the way in new research fields and experimental methods, including those in social and organizational domains, which are vital for driving innovation. The EU-LIFE alliance was established with the goal of fostering excellence by developing and disseminating best practices among European biomedical research institutes. As directors of the 15 EU-LIFE institutes, we have spent a decade comparing and refining our processes. Now, we are eager to share the insights we've gained. To this end, we have crafted this Charter, outlining 10 principles we deem essential for research institutes to flourish and achieve ground-breaking discoveries. These principles, detailed in the Charter, encompass excellence, independence, training, internationality and inclusivity, mission focus, technological advancement, administrative innovation, cooperation, societal impact, and public engagement. Our aim is to inspire the establishment of new institutes that adhere to these principles and to raise awareness about their significance. We are convinced that they should be viewed a crucial component of any national and international innovation strategies.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Investigación Biomédica , Academias e Institutos
15.
Cell Death Dis ; 14(2): 133, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797240

RESUMEN

Polo-like kinase 4 (Plk4), the major regulator of centriole biogenesis, has emerged as a putative therapeutic target in cancer due to its abnormal expression in human carcinomas, leading to centrosome number deregulation, mitotic defects and chromosomal instability. Moreover, Plk4 deregulation promotes tumor growth and metastasis in mouse models and is significantly associated with poor patient prognosis. Here, we further investigate the role of Plk4 in carcinogenesis and show that its overexpression significantly potentiates resistance to cell death by anoikis of nontumorigenic p53 knock-out (p53KO) mammary epithelial cells. Importantly, this effect is independent of Plk4's role in centrosome biogenesis, suggesting that this kinase has additional cellular functions. Interestingly, the Plk4-induced anoikis resistance is associated with the induction of a stable hybrid epithelial-mesenchymal phenotype and is partially dependent on P-cadherin upregulation. Furthermore, we found that the conditioned media of Plk4-induced p53KO mammary epithelial cells also induces anoikis resistance of breast cancer cells in a paracrine way, being also partially dependent on soluble P-cadherin secretion. Our work shows, for the first time, that high expression levels of Plk4 induce anoikis resistance of both mammary epithelial cells with p53KO background, as well as of breast cancer cells exposed to their secretome, which is partially mediated through P-cadherin upregulation. These results reinforce the idea that Plk4, independently of its role in centrosome biogenesis, functions as an oncogene, by impacting the tumor microenvironment to promote malignancy.


Asunto(s)
Neoplasias de la Mama , Proteína p53 Supresora de Tumor , Animales , Femenino , Humanos , Ratones , Anoicis , Neoplasias de la Mama/genética , Células Epiteliales , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Transición Epitelial-Mesenquimal
16.
J Cell Sci ; 123(Pt 9): 1414-26, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20392737

RESUMEN

The centriole and basal body (CBB) structure nucleates cilia and flagella, and is an essential component of the centrosome, underlying eukaryotic microtubule-based motility, cell division and polarity. In recent years, components of the CBB-assembly machinery have been identified, but little is known about their regulation and evolution. Given the diversity of cellular contexts encountered in eukaryotes, but the remarkable conservation of CBB morphology, we asked whether general mechanistic principles could explain CBB assembly. We analysed the distribution of each component of the human CBB-assembly machinery across eukaryotes as a strategy to generate testable hypotheses. We found an evolutionarily cohesive and ancestral module, which we term UNIMOD and is defined by three components (SAS6, SAS4/CPAP and BLD10/CEP135), that correlates with the occurrence of CBBs. Unexpectedly, other players (SAK/PLK4, SPD2/CEP192 and CP110) emerged in a taxon-specific manner. We report that gene duplication plays an important role in the evolution of CBB components and show that, in the case of BLD10/CEP135, this is a source of tissue specificity in CBB and flagella biogenesis. Moreover, we observe extreme protein divergence amongst CBB components and show experimentally that there is loss of cross-species complementation among SAK/PLK4 family members, suggesting species-specific adaptations in CBB assembly. We propose that the UNIMOD theory explains the conservation of CBB architecture and that taxon- and tissue-specific molecular innovations, gained through emergence, duplication and divergence, play important roles in coordinating CBB biogenesis and function in different cellular contexts.


Asunto(s)
Centriolos/química , Centriolos/metabolismo , Evolución Molecular , Proteínas/metabolismo , Animales , Secuencia de Bases , Centriolos/genética , Variación Genética , Humanos , Especificidad de Órganos , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo
17.
Traffic ; 10(5): 482-98, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19416494

RESUMEN

Centrioles are essential for the formation of microtubule-derived structures, including cilia, flagella and centrosomes. These structures are involved in a variety of functions, from cell motility to division. In most dividing animal cells, centriole formation is coupled to the chromosome cycle. However, this is not the case in certain specialized divisions, such as meiosis, and in some differentiating cells. For example, oocytes loose their centrioles upon differentiation, whereas multiciliated epithelial cells make several of those structures after they exit the cell cycle. Aberrations of centriole number are seen in many cancer cells. Recent studies began to shed light on the molecular control of centriole number, its variations in development, and how centriole number changes in human disease. Here we review the recent developments in this field.


Asunto(s)
Centriolos/metabolismo , Centriolos/fisiología , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Centriolos/genética , Centrosoma/metabolismo , Cilios/genética , Cilios/metabolismo , Cilios/fisiología , Cricetinae , Células Epiteliales/metabolismo , Flagelos/genética , Flagelos/metabolismo , Humanos , Masculino , Meiosis , Microtúbulos/genética , Microtúbulos/metabolismo
18.
19.
Cell Mol Life Sci ; 67(13): 2173-94, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20300952

RESUMEN

Centrioles are cylinders made of nine microtubule (MT) triplets present in many eukaryotes. Early studies, where centrosomes were seen at the poles of the mitotic spindle led to their coining as "the organ for cell division". However, a variety of subsequent observational and functional studies showed that centrosomes might not always be essential for mitosis. Here we review the arguments in this debate. We describe the centriole structure and its distribution in the eukaryotic tree of life and clarify its role in the organization of the centrosome and cilia, with an historical perspective. An important aspect of the debate addressed in this review is how centrioles are inherited and the role of the spindle in this process. In particular, germline inheritance of centrosomes, such as their de novo formation in parthenogenetic species, poses many interesting questions. We finish by discussing the most likely functions of centrioles and laying out new research avenues.


Asunto(s)
Centriolos/fisiología , Mitosis , Animales , División Celular , Línea Celular , Centrosoma/fisiología , Cilios/clasificación , Cilios/metabolismo , Drosophila , Microtúbulos/metabolismo , Partenogénesis , Huso Acromático/fisiología
20.
J Cell Biol ; 220(5)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33760919

RESUMEN

Centrioles form centrosomes and cilia. In most proliferating cells, centrioles assemble through canonical duplication, which is spatially, temporally, and numerically regulated by the cell cycle and the presence of mature centrioles. However, in certain cell types, centrioles assemble de novo, yet by poorly understood mechanisms. Herein, we established a controlled system to investigate de novo centriole biogenesis, using Drosophila melanogaster egg explants overexpressing Polo-like kinase 4 (Plk4), a trigger for centriole biogenesis. We show that at a high Plk4 concentration, centrioles form de novo, mature, and duplicate, independently of cell cycle progression and of the presence of other centrioles. Plk4 concentration determines the temporal onset of centriole assembly. Moreover, our results suggest that distinct biochemical kinetics regulate de novo and canonical biogenesis. Finally, we investigated which other factors modulate de novo centriole assembly and found that proteins of the pericentriolar material (PCM), and in particular γ-tubulin, promote biogenesis, likely by locally concentrating critical components.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Células Cultivadas , Centriolos/metabolismo , Centrosoma/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Masculino , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA