Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39091840

RESUMEN

S-nitrosylation of Cx43 gap junction channels critically regulates communication between smooth muscle cells and endothelial cells. This posttranslational modification also induces the opening of undocked Cx43 hemichannels. However, its specific impact on vasomotor regulation remains unclear. Considering the role of endothelial TRPV4 channel activation in promoting vasodilation through nitric oxide (NO) production, we investigated the direct modulation of endothelial Cx43 hemichannels by TRPV4 channel activation. Using the proximity ligation assay, we identify that Cx43 and TRPV4 are found in close proximity in the endothelium of resistance arteries. In primary endothelial cell cultures from resistance arteries (ECs), GSK-induced TRPV4 activation enhances eNOS activity, increases NO production, and opens Cx43 hemichannels via direct S-nitrosylation. Notably, the elevated intracellular Ca2+ levels caused by TRPV4 activation were reduced by blocking Cx43 hemichannels. In ex vivo mesenteric arteries, inhibiting Cx43 hemichannels reduced endothelial hyperpolarization without affecting NO production in ECs, underscoring a critical role of TRPV4/Cx43 signaling in endothelial electrical behavior. We perturbed the proximity of Cx43/TRPV4 by disrupting lipid rafts in ECs using ß-cyclodextrin. Under these conditions, hemichannel activity, Ca2+ influx, and endothelial hyperpolarization were blunted upon GSK stimulation. Intravital microscopy of mesenteric arterioles in vivo further demonstrated that inhibiting Cx43 hemichannels activity, NO production and disrupting endothelial integrity reduce TRPV4-induced relaxation. These findings underscore a new pivotal role of Cx43 hemichannel associated with TRPV4 signaling pathway in modulating endothelial electrical behavior and vasomotor tone regulation.

2.
IUBMB Life ; 65(10): 819-26, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24078390

RESUMEN

S-Nitrosation is rapidly emerging as a regulatory mechanism in vascular biology, with particular importance in the onset of hyperpermeability induced by pro-inflammatory agents. This review focuses on the role of endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) in regulating S-Nitrosation of adherens junction proteins. We discuss evidence for translocation of eNOS, via caveolae, to the cytosol and analyze the significance of eNOS location for S-Nitrosation and onset of endothelial hyperpermeability to macromolecules.


Asunto(s)
Células Endoteliales/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico/metabolismo , Permeabilidad , Caveolas/metabolismo , Citosol/metabolismo , Humanos , Óxido Nítrico/genética , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitrosación/genética
3.
J Biol Chem ; 286(35): 30409-30414, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21757745

RESUMEN

Endothelial NOS (eNOS)-derived NO is a key factor in regulating microvascular permeability. We demonstrated previously that eNOS translocation from the plasma membrane to the cytosol is required for hyperpermeability. Herein, we tested the hypothesis that eNOS activation in the cytosol is necessary for agonist-induced hyperpermeability. To study the fundamental properties of endothelial cell monolayer permeability, we generated ECV-304 cells that stably express cDNA constructs targeting eNOS to the cytosol or plasma membrane. eNOS-transfected ECV-304 cells recapitulate the eNOS translocation and permeability properties of postcapillary venular endothelial cells (Sánchez, F. A., Rana, R., Kim, D. D., Iwahashi, T., Zheng, R., Lal, B. K., Gordon, D. M., Meininger, C. J., and Durán, W. N. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 6849-6853). We used platelet-activating factor (PAF) as a proinflammatory agonist. PAF activated eNOS by increasing phosphorylation of Ser-1177 and inducing dephosphorylation of Thr-495, increasing NO production, and elevating permeability to FITC-dextran 70 in monolayers of cells expressing wild-type and cytosolic eNOS. PAF failed to increase permeability to FITC-dextran 70 in monolayers of cells transfected with eNOS targeted to the plasma membrane. Interestingly, this occurred despite eNOS Ser-1177 phosphorylation and production of comparable amounts of NO. Our results demonstrate that the presence of eNOS in the cytosol is necessary for PAF-induced hyperpermeability. Our data provide new insights into the dynamics of eNOS and eNOS-derived NO in the process of inflammation.


Asunto(s)
Citosol/enzimología , Óxido Nítrico Sintasa de Tipo III/fisiología , Calibración , Membrana Celular/metabolismo , Citosol/metabolismo , ADN Complementario/metabolismo , Humanos , Inflamación , Microscopía Fluorescente/métodos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/química , Permeabilidad , Fosforilación , Factor de Activación Plaquetaria/metabolismo , Transporte de Proteínas , Fracciones Subcelulares
4.
J Nutr ; 134(7): 1697-703, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15226456

RESUMEN

Intestinal fructose transporter (GLUT5) expression normally increases significantly after completion of weaning in neonatal rats. Increases in GLUT5 mRNA, protein, and activity can be induced in early weaning pups by precocious consumption of dietary fructose or by perfusion of the small intestine with fructose solutions. Little is known about the signal transduction pathway of the dietary fructose-mediated increase in GLUT5 expression during early intestinal development. Recent microarray results indicate that key gluconeogenic enzymes modulated by cAMP are markedly upregulated by fructose perfusion; hence, we tested the hypothesis that cAMP plays an important role in regulating intestinal fructose absorption by simultaneously perfusing adenylyl cyclase, phosphodiesterase, or protein kinase A (PKA) inhibitors along with fructose. Intestinal fructose uptake rates increased by 100% in rat pups perfused with 8-bromo-cAMP. Simultaneous fructose and dideoxyadenosine (DDA; inhibitor of adenylyl cyclase) perfusion completely inhibited increases in fructose uptake rate induced by perfusion with fructose alone. Fructose perfusion increased intestinal mucosal cAMP concentrations by 27%, but simultaneous perfusion of fructose and DDA inhibited the fructose-induced increase in cAMP. However, GLUT5 and sodium-glucose cotransporter (SGLT1) mRNA abundance and glucose transport rates were each not significantly affected by 8-bromo-cAMP and DDA. Moreover, simultaneous perfusion of the small intestine with fructose and PKA inhibitor or N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamid. 2HCl, both inhibitors of PKA, did not prevent the fructose-induced increases in GLUT5 mRNA abundance and fructose uptake rate. Cyclic AMP appears to modulate fructose transport without affecting GLUT5 mRNA abundance, and without involving PKA.


Asunto(s)
AMP Cíclico/farmacología , Fructosa/farmacocinética , Intestino Delgado/efectos de los fármacos , Proteínas de Transporte de Monosacáridos/fisiología , Animales , Animales Recién Nacidos , Femenino , Fructosa/farmacología , Glucosa/farmacocinética , Transportador de Glucosa de Tipo 5 , Absorción Intestinal/efectos de los fármacos , Intestino Delgado/metabolismo , Masculino , Proteínas de Transporte de Monosacáridos/efectos de los fármacos , Análisis por Matrices de Proteínas , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA