Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ther ; 32(7): 2357-2372, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38751112

RESUMEN

Natural killer (NK) cells have high intrinsic cytotoxic capacity, and clinical trials have demonstrated their safety and efficacy for adoptive cancer therapy. Expression of chimeric antigen receptors (CARs) enhances NK cell target specificity, with these cells applicable as off-the-shelf products generated from allogeneic donors. Here, we present for the first time an innovative approach for CAR NK cell engineering employing a non-viral Sleeping Beauty (SB) transposon/transposase-based system and minimized DNA vectors termed minicircles. SB-modified peripheral blood-derived primary NK cells displayed high and stable CAR expression and more frequent vector integration into genomic safe harbors than lentiviral vectors. Importantly, SB-generated CAR NK cells demonstrated enhanced cytotoxicity compared with non-transfected NK cells. A strong antileukemic potential was confirmed using established acute lymphocytic leukemia cells and patient-derived primary acute B cell leukemia and lymphoma samples as targets in vitro and in vivo in a xenograft leukemia mouse model. Our data suggest that the SB-transposon system is an efficient, safe, and cost-effective approach to non-viral engineering of highly functional CAR NK cells, which may be suitable for cancer immunotherapy of leukemia as well as many other malignancies.


Asunto(s)
Vectores Genéticos , Inmunoterapia Adoptiva , Células Asesinas Naturales , Receptores Quiméricos de Antígenos , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Animales , Ratones , Vectores Genéticos/genética , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Inmunoterapia Adoptiva/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Transposasas/genética , Transposasas/metabolismo , Línea Celular Tumoral , Elementos Transponibles de ADN , Citotoxicidad Inmunológica , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Ingeniería Celular/métodos
3.
J Leukoc Biol ; 114(5): 475-486, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37403203

RESUMEN

Natural killer cells are a promising platform for cancer immunotherapy. Natural killer cells have high intrinsic killing capability, and the insertion of a chimeric antigen receptor can further enhance their antitumor potential. In first-in-human trials, chimeric antigen receptor-natural killer cells demonstrated strong clinical activity without therapy-induced side effects. The applicability of natural killer cells as an "off-the-shelf" product makes them highly attractive for gene-engineered cell therapies. Traditionally, viral transduction has been used for gene editing; however, the use of viral vectors remains a safety concern and is associated with high costs and regulatory requirements. Here, we review the current landscape of nonviral approaches for chimeric antigen receptor-natural killer cell generation. This includes transfection of vector particles and electroporation of mRNA and DNA vectors, resulting in transient modification and chimeric antigen receptor expression. In addition, using nonviral transposon technologies, natural killer cells can be stably modified ensuring long-lasting chimeric antigen receptor expression. Finally, we discuss CRISPR/Cas9 tools to edit key genes for natural killer cell functionality.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales , Inmunoterapia/métodos , Tratamiento Basado en Trasplante de Células y Tejidos
4.
Cancers (Basel) ; 15(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37370838

RESUMEN

Nodal T-follicular helper cell lymphoma, angioimmunoblastic-type (AITL), is characterized by constitutional symptoms, advanced-stage disease, and generalized lymphadenopathy. A genetic hallmark of this lymphoma is the frequent occurrence of the RHOA mutation G17V in neoplastic cells, which is observed in around 60% of patients. Because RHOA is involved in both T-cell receptor downstream signalling and cell migration, we hypothesized that the characteristic presentation of AITL could be the result of enhanced tumor cell migration. Therefore, this study aimed to elucidate the impact of the RHOA variant G17V on the migration of neoplastic T cells. We transfected the T-cell lymphoma cell lines HH and HuT78 to stably express the RHOA-G17V variant. RHOA-G17V-expressing T cells did not exhibit enhanced motility compared to empty-vector-transfected cells in microchannels, a 3D collagen gel, or primary human lymphatic tissue. Cells of the HH cell line expressing RHOA-G17V had an increased number of cells with cleaved collagen compared with the empty-vector-transfected cells. Therefore, we hypothesized that the early spread of AITL tumor cells may be related to remodelling of the extracellular matrix. Accordingly, we observed a significant negative correlation between the relative area of collagen in histological sections from 18 primary AITL and the allele frequency of the RHOA-G17V mutation. In conclusion, our results suggest that the characteristic presentation of AITL with early, widespread dissemination of lymphoma cells is not the result of an enhanced migration capacity due to the RHOA-G17V mutation; instead, this feature may rather be related to extracellular matrix remodelling.

5.
Oncoimmunology ; 11(1): 2081415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694192

RESUMEN

Natural Killer (NK) cells are known for their high intrinsic cytotoxic capacity, and the possibility to be applied as 'off-the-shelf' product makes them highly attractive for cell-based immunotherapies. In patients with multiple myeloma (MM), an elevated number of NK cells has been correlated with higher overall-survival rate. However, NK cell function can be impaired by upregulation of inhibitory receptors, such as the immune checkpoint NKG2A. Here, we developed a CRISPR-Cas9-based gene editing protocol that allowed us to knockout about 80% of the NKG2A-encoding killer cell lectin like receptor C1 (KLRC1) locus in primary NK cells. In-depth phenotypic analysis confirmed significant reduction in NKG2A protein expression. Importantly, the KLRC1-edited NK cells showed significantly increased cytotoxicity against primary MM cells isolated from a small cohort of patients, and maintained the NK cell-specific cytokine production. In conclusion, KLRC1-editing in primary NK cells has the prospect of overcoming immune checkpoint inhibition in clinical applications.


Asunto(s)
Mieloma Múltiple , Subfamília C de Receptores Similares a Lectina de Células NK , Sistemas CRISPR-Cas/genética , Edición Génica , Humanos , Células Asesinas Naturales/metabolismo , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo
6.
Cancers (Basel) ; 13(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33807011

RESUMEN

The promising development of adoptive immunotherapy over the last four decades has revealed numerous therapeutic approaches in which dedicated immune cells are modified and administered to eliminate malignant cells. Starting in the early 1980s, lymphokine activated killer (LAK) cells were the first ex vivo generated NK cell-enriched products utilized for adoptive immunotherapy. Over the past decades, various immunotherapies have been developed, including cytokine-induced killer (CIK) cells, as a peripheral blood mononuclear cells (PBMCs)-based therapeutic product, the adoptive transfer of specific T and NK cell products, and the NK cell line NK-92. In addition to allogeneic NK cells, NK-92 cell products represent a possible "off-the-shelf" therapeutic concept. Recent approaches have successfully enhanced the specificity and cytotoxicity of T, NK, CIK or NK-92 cells towards tumor-specific or associated target antigens generated by genetic engineering of the immune cells, e.g., to express a chimeric antigen receptor (CAR). Here, we will look into the history and recent developments of T and NK cell-based immunotherapy.

7.
Oncoimmunology ; 9(1): 1777651, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33457093

RESUMEN

Chimeric antigen receptor (CAR)-T cell therapies have achieved remarkable success. However, application-related toxicities, such as cytokine release syndrome or neurotoxicity, moved natural killer (NK) cells into focus as novel players in immunotherapy. CAR-NK cells provide an advantageous dual killing-capacity by CAR-dependent and -independent mechanisms and induce few side effects. While the majority of trials still use CAR-T cells, CAR-NK cell trials are on the rise with 19 ongoing studies worldwide. This review illuminates the current state of research and clinical application of CAR-NK cells, as well as future developmental potential.


Asunto(s)
Células Asesinas Naturales , Receptores de Antígenos de Linfocitos T , Síndrome de Liberación de Citoquinas , Humanos , Inmunoterapia/efectos adversos , Inmunoterapia Adoptiva
8.
Front Immunol ; 10: 3123, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32117200

RESUMEN

Autologous chimeric antigen receptor-modified (CAR) T cells with specificity for CD19 showed potent antitumor efficacy in clinical trials against relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL). Contrary to T cells, natural killer (NK) cells kill their targets in a non-antigen-specific manner and do not carry the risk of inducing graft vs. host disease (GvHD), allowing application of donor-derived cells in an allogenic setting. Hence, unlike autologous CAR-T cells, therapeutic CD19-CAR-NK cells can be generated as an off-the-shelf product from healthy donors. Nevertheless, genetic engineering of peripheral blood (PB) derived NK cells remains challenging and optimized protocols are needed. In our study, we aimed to optimize the generation of CD19-CAR-NK cells by retroviral transduction to improve the high antileukemic capacity of NK cells. We compared two different retroviral vector platforms, the lentiviral and alpharetroviral, both in combination with two different transduction enhancers (Retronectin and Vectofusin-1). We further explored different NK cell isolation techniques (NK cell enrichment and CD3/CD19 depletion) to identify the most efficacious methods for genetic engineering of NK cells. Our results demonstrated that transduction of NK cells with RD114-TR pseudotyped retroviral vectors, in combination with Vectofusin-1 was the most efficient method to generate CD19-CAR-NK cells. Retronectin was potent in enhancing lentiviral/VSV-G gene delivery to NK cells but not alpharetroviral/RD114-TR. Furthermore, the Vectofusin-based transduction of NK cells with CD19-CARs delivered by alpharetroviral/RD114-TR and lentiviral/RD114-TR vectors outperformed lentiviral/VSV-G vectors. The final generated CD19-CAR-NK cells displayed superior cytotoxic activity against CD19-expressing target cells when compared to non-transduced NK cells achieving up to 90% specific killing activity. In summary, our findings present the use of RD114-TR pseudotyped retroviral particles in combination with Vectofusin-1 as a successful strategy to genetically modify PB-derived NK cells to achieve highly cytotoxic CD19-CAR-NK cells at high yield.


Asunto(s)
Alpharetrovirus/genética , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/fisiología , Lentivirus/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Receptores de Antígenos de Linfocitos T/genética , Antígenos CD19/inmunología , Antígenos CD19/metabolismo , Línea Celular Tumoral , Citotoxicidad Inmunológica , Ingeniería Genética , Vectores Genéticos , Humanos , Células Asesinas Naturales/trasplante , Péptidos/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA