RESUMEN
We report the development of a new spray-drying and nanoparticle assembly process (SNAP) that enables the formation of stable, yet rapidly dissolving, sub-200 nm nanocrystalline particles within a high Tg glassy matrix. SNAP expands the class of drugs that spray-dried dispersion (SDD) processing can address to encompass highly crystalline, but modestly hydrophobic, drugs that are difficult to process by conventional SDD. The process integrates rapid precipitation and spray-drying within a custom designed nozzle to produce high supersaturations and precipitation of the drug and high Tg glassy polymer. Keeping the time between precipitation and drying to tens of milliseconds allows for kinetic trapping of drug nanocrystals in the polymer matrix. Powder X-ray diffraction, solid state 2D NMR, and SEM imaging shows that adding an amphiphilic block copolymer (BCP) to the solvent gives essentially complete crystallization of the active pharmaceutical ingredient (API) with sub-200 nm domains. In contrast, the absence of the block copolymer results in the API being partially dispersed in the matrix as an amorphous phase, which can be sensitive to changes in bioavailability over time. Quantification of the API-excipient interactions by 2D 13C-1H NMR correlation spectroscopy shows that the mechanism of enhanced nanocrystal formation is not due to interactions between the drug and the BCP, but rather the BCP masks interactions between the drug and hydrophobic regions of the matrix polymers. BCP-facilitated SNAP samples show improved stability during aging studies and rapid dissolution and release of API in vitro.
Asunto(s)
Desecación/métodos , Composición de Medicamentos/métodos , Nanopartículas/química , Disponibilidad Biológica , Química Farmacéutica/métodos , Liberación de Fármacos , Excipientes , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Polímeros/química , Solubilidad , Difracción de Rayos XRESUMEN
PURPOSE: To demonstrate drug/polymer nanoparticles can increase the rate and extent of oral absorption of a low-solubility, high-permeability drug. METHODS: Amorphous drug/polymer nanoparticles containing celecoxib were prepared using ethyl cellulose and either sodium caseinate or bile salt. Nanoparticles were characterized using dynamic light scattering, transmission and scanning electron microscopy, and differential scanning calorimetry. Drug release and resuspension studies were performed using high-performance liquid chromatography. Pharmacokinetic studies were performed in dogs and humans. RESULTS: A physical model is presented describing the nanoparticle state of matter and release performance. Nanoparticles dosed orally in aqueous suspensions provided higher systemic exposure and faster attainment of peak plasma concentrations than commercial capsules, with median time to maximum drug concentration (Tmax) of 0.75 h in humans for nanoparticles vs. 3 h for commercial capsules. Nanoparticles released celecoxib rapidly and provided higher dissolved-drug concentrations than micronized crystalline drug. Nanoparticle suspensions are stable for several days and can be spray-dried to form dry powders that resuspend in water. CONCLUSIONS: Drug/polymer nanoparticles are well suited for providing rapid oral absorption and increased bioavailability of BCS Class II drugs.
Asunto(s)
Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Inhibidores de la Ciclooxigenasa 2/farmacocinética , Nanopartículas/química , Pirazoles/administración & dosificación , Pirazoles/farmacocinética , Sulfonamidas/administración & dosificación , Sulfonamidas/farmacocinética , Adulto , Animales , Disponibilidad Biológica , Celecoxib , Celulosa/análogos & derivados , Celulosa/química , Perros , Humanos , Masculino , Nanopartículas/ultraestructura , Permeabilidad , SolubilidadRESUMEN
Solid amorphous dispersions are frequently used to improve the solubility and, thus, the bioavailability of poorly soluble active pharmaceutical ingredients (APIs). Spray-drying, a well-characterized pharmaceutical unit operation, is ideally suited to producing solid amorphous dispersions due to its rapid drying kinetics. This paper describes a novel flowchart methodology based on fundamental engineering models and state-of-the-art process characterization techniques that ensure that spray-drying process development and scale-up are efficient and require minimal time and API. This methodology offers substantive advantages over traditional process-development methods, which are often empirical and require large quantities of API and long development times. This approach is also in alignment with the current guidance on Pharmaceutical Development Q8(R1). The methodology is used from early formulation-screening activities (involving milligrams of API) through process development and scale-up for early clinical supplies (involving kilograms of API) to commercial manufacturing (involving metric tons of API). It has been used to progress numerous spray-dried dispersion formulations, increasing bioavailability of formulations at preclinical through commercial scales.