Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396904

RESUMEN

Accurately characterizing DNA double-stranded breaks (DSBs) and understanding the DNA damage response (DDR) is crucial for assessing cellular genotoxicity, maintaining genomic integrity, and advancing gene editing technologies. Immunofluorescence-based techniques have proven to be invaluable for quantifying and visualizing DSB repair, providing valuable insights into cellular repair processes. However, the selection of appropriate markers for analysis can be challenging due to the intricate nature of DSB repair mechanisms, often leading to ambiguous interpretations. This comprehensively summarizes the significance of immunofluorescence-based techniques, with their capacity for spatiotemporal visualization, in elucidating complex DDR processes. By evaluating the strengths and limitations of different markers, we identify where they are most relevant chronologically from DSB detection to repair, better contextualizing what each assay represents at a molecular level. This is valuable for identifying biases associated with each assay and facilitates accurate data interpretation. This review aims to improve the precision of DSB quantification, deepen the understanding of DDR processes, assay biases, and pathway choices, and provide practical guidance on marker selection. Each assay offers a unique perspective of the underlying processes, underscoring the need to select markers that are best suited to specific research objectives.


Asunto(s)
Roturas del ADN de Doble Cadena , Daño del ADN , ADN/metabolismo , Reparación del ADN , Reparación del ADN por Unión de Extremidades
2.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139085

RESUMEN

Tumour repopulation during treatment is a well acknowledged yet still challenging aspect of cancer management. The latest research results show clear evidence towards the existence of cancer stem cells (CSCs) that are responsible for tumour repopulation, dissemination, and distant metastases in most solid cancers. Cancer stem cell quiescence and the loss of asymmetrical division are two powerful mechanisms behind repopulation. Another important aspect in the context of cancer stem cells is cell plasticity, which was shown to be triggered during fractionated radiotherapy, leading to cell dedifferentiation and thus reactivation of stem-like properties. Repopulation during treatment is not limited to radiotherapy, as there is clinical proof for repopulation mechanisms to be activated through other conventional treatment techniques, such as chemotherapy. The dynamic nature of stem-like cancer cells often elicits resistance to treatment by escaping drug-induced cell death. The aims of this scoping review are (1) to describe the main mechanisms used by cancer stem cells to initiate tumour repopulation during therapy; (2) to present clinical evidence for tumour repopulation during radio- and chemotherapy; (3) to illustrate current trends in the identification of CSCs using specific imaging techniques; and (4) to highlight novel technologies that show potential in the eradication of CSCs.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , División Celular , Células Madre Neoplásicas , Muerte Celular
3.
Med Phys ; 51(7): 5032-5044, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38197481

RESUMEN

BACKGROUND: Actinium-225 (225Ac) is an alpha emitting radionuclide which has demonstrated promising results in Targeted Alpha Therapy (TAT). A concern with 225Ac is that the decay energy can break the bond to the targeting vehicle, resulting in the release of free alpha-emitting daughter radionuclides in the body. PURPOSE: The aim of this work is to develop a compartment model to describe the movement of unlabeled 225Ac in a human where the daughter isotopes of 225Ac have unique biokinetics. METHOD: The ICRP Occupational Intake of Radionuclides reports were used to construct a compartment model for the 225Ac decay chain where the daughter isotopes of 225Ac are assigned their own unique transfer coefficients (TCs) between compartments. Computer simulations were performed for unlabeled 225Ac uniformly placed in the plasma and only the dose from alpha particles was considered. Absorbed doses to normal organs were determined for the liver, kidneys, bone, soft tissue, active marrow, and blood. Simulations were performed for the case when: (1) the daughters have unique biokinetics and (2) the daughters decay at the site of 225Ac. RESULTS: When the daughters have unique biokinetics, the organs that receive the highest absorbed dose are the liver (male: 1466.6 mGy/MBq, female: 1885.7 mGy/MBq), bone (male: 293.6 mGy/MBq, female: 403.6 mGy/MBq) and kidneys (male: 260.8 mGy/MBq, female: 294.0 mGy/MBq). These doses were compared to the case when the daughters of 225Ac decay at the site of 225Ac. There was a 13.5% increase in kidney dose, a 0.8% decrease in liver dose, and <0.1% decrease in bone dose calculations when the daughters have unique biokinetics compared to assuming the daughters decay at the site of 225Ac. CONCLUSIONS: The kidneys received a large dose estimate (260-295 mGy/MBq) as well as a considerable change in dose of +13.5% when the daughters have unique biokinetics compared to assuming the daughters decay at the site of 225Ac. Therefore, to accurately determine the kidney dose from unlabeled 225Ac in a human, the biokinetics of the daughter isotopes should be considered.


Asunto(s)
Actinio , Radiometría , Humanos , Actinio/química , Femenino , Modelos Biológicos , Masculino , Simulación por Computador , Dosis de Radiación , Cinética , Partículas alfa
4.
Target Oncol ; 19(4): 511-531, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38836953

RESUMEN

Glioblastoma (GB), a prevalent and highly malignant primary brain tumour with a very high mortality rate due to its resistance to conventional therapies and invasive nature, resulting in 5-year survival rates of only 4-17%. Despite recent advancements in cancer management, the survival rates for GB patients have not significantly improved over the last 10-20 years. Consequently, there exists a critical unmet need for innovative therapies. One promising approach for GB is Targeted Alpha Therapy (TAT), which aims to selectively deliver potentially therapeutic radiation doses to malignant cells and the tumour microenvironment while minimising radiation exposure to surrounding normal tissue with or without conventional external beam radiation. This approach has shown promise in both pre-clinical and clinical settings. A review was conducted following PRISMA 2020 guidelines across Medline, SCOPUS, and Embase, identifying 34 relevant studies out of 526 initially found. In pre-clinical studies, TAT demonstrated high binding specificity to targeted GB cells, with affinity rates between 60.0% and 84.2%, and minimal binding to non-targeted cells (4.0-5.6%). This specificity significantly enhanced cytotoxic effects and improved biodistribution when delivered intratumorally. Mice treated with TAT showed markedly higher median survival rates compared to control groups. In clinical trials, TAT applied to recurrent GB (rGB) displayed varying success rates in extending overall survival (OS) and progression-free survival. Particularly effective when integrated into treatment regimens for both newly diagnosed and recurrent cases, TAT increased the median OS by 16.1% in newly diagnosed GB and by 36.4% in rGB, compared to current standard therapies. Furthermore, it was generally well tolerated with minimal adverse effects. These findings underscore the potential of TAT as a viable therapeutic option in the management of GB.


Asunto(s)
Partículas alfa , Ensayos Clínicos como Asunto , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Partículas alfa/uso terapéutico , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA